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Abstract Ecological dynamics is increasingly explained by
eco-evolutionary processes, with this study analysing natu-
ral selection effects on the population dynamics of birds and
mammals. Fitting single-species population dynamic mod-
els to 3,369 and 483 timeseries for 900 species of birds and
208 mammals, I find selection-based population dynamic
models to be 780 (se:1.3) to 150,000 (se:2) times more prob-
able than models with no selection. Selection is essential
in 79% to 92% of AIC selected models, explaining 80% of
the population dynamics variance, with median selection
regulation being 1.2 (se:0.11) times stronger than density
regulation. The estimated dynamics is cyclic with median
damping ratios of 0.12 (se:0.0071) and 0.062 (se:0.021) for
birds and mammals, and median population periods of 8.3
(se:0.99) and 7.2 (se:0.85) generations for stable cycles with
damping ratios around zero. These results resolve several
enigmas of population cycles, highlighting the importance
of integrating natural selection into population dynamics.
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1 Introduction

Population regulation shapes the dynamics of natural
populations, but traditional single-species population
regulation theory fails to explain even simple popula-
tion dynamic trajectories. Take for example a popula-
tion that declines gradually until the decline stops and
the population begins to increase. This is an often-
observed growth pattern, but density dependent com-
petition does not explain it. Density regulated popu-
lations will only increase, or decline, towards carrying
capacity showing no change in the direction of growth
(over-compensation from strong density regulation does
not explain a gradual change in the direction of growth).

For the past century or so, variation in environmental
drivers provided the conceptual solution to the lack of
fit between single-species population regulation theory
and data. These drivers may be density dependent or
independent, including environmental fluctuations, cli-
matic change, predators, and prey. With the dynamics

of natural populations correlating with environmental
factors (e.g. Elton 1924; Koenig 2002; Jenkins et al.
2022), evidence suggests that deviations from density
regulated growth follow from external perturbations.
The vast majority of the available timeseries of abun-
dance estimates, however, have no associated data to
confirm the extrinsic hypothesis. It is therefore often
of limited practical use and is perhaps more often a con-
venient ad hoc explanation for the lack of fit between
single-species theory and data.

Delayed density regulated models provide a practical
solution, generating “single-species” models that “ex-
plain” much of the observed dynamics (e.g. Turchin
and Taylor 1992; Hörnfeldt 1994; Hansen et al. 1999).
But delayed density regulated studies turn the blind
eye to the real problem: the absence of identified but
necessary population dynamic interactions. By explic-
itly not incorporating biological mechanisms for the de-
layed regulation, delayed density regulation fails to ex-
plain the observed dynamics from population biological
mechanisms.

If we concentrate on studies with a population mech-
anistic focus, explanations have advanced by spatial
synchrony (Ranta et al. 1995; Liebhold et al. 2004),
stochasticity (Kaitala et al. 1996; McKane and New-
man 2005), environmental oscillations (Post and Forch-
hammer 2002; Taylor et al. 2013), maternal effects
(Ginzburg 1998), demographic details (Murdoch et al.
2002; McCauley et al. 2008), and higher-dimensional in-
teractions (Tyson et al. 2010; Liu et al. 2013; Mart́ınez-
Padilla et al. 2014). But several enduring enigmas re-
main unsolved by this broader population dynamic the-
ory (Myers 2018; Oli 2019; Andreassen et al. 2021).

These issues include the link between population cy-
cles and trophic interactions, a theoretical dependence
that seems not to apply to natural populations. One
example is the isolated Daphnia-algae system analysed
by Murdoch and McCauley (1985), where Daphnia were
found to cycle with a relatively fixed period indepen-
dently of the presence versus absence of a cycle in algae.
A similar paradox includes snowshoe hares that cycle
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in the absence of lynx (Keith 1963), and the absence of
a firm predator-prey interaction for one of best docu-
mented cycles in forest insects (Berryman 1996).

Another problem is the widespread presence of life
history changes in phase with population dynamic cy-
cles, changes that do not follow from density regu-
lation, nor from interactions between predators and
prey. Where predation affects survival, “most, if not
all, cyclic rodent populations are characterised by phase
related changes in body mass, social behaviour, . . . and
reproductive rates” (Oli 2019). These life history cycles
are a real paradox, as reproduction remains low across
the low phase of population cycles, where it should be
high due to relaxed density regulation (Myers 2018).

Other lingering problems include that no experimen-
tal manipulation of predators and resources “has suc-
ceeded in stopping rodent population cycles anywhere”
(Oli 2019), and “how can low amplitude cycles persist
if high densities are required for the build-up of preda-
tors, parasitoids, pathogens or detrimental conditions”
(Myers 2018).

These issues do not question population dynamics
influenced by external factors, but they hint at a pop-
ulation dynamic theory that lacks essential population
dynamic mechanisms. In my search for such a mecha-
nism, I analyse the way populations regulate their own
growth when other things are equal. I take the par-
simonious view that to explain the growth of natural
populations we need first of all to understand how they
regulate their own growth.

A focus on internal population regulation is impor-
tant because it is this most basic population regulation
that sets the stage of our population dynamic investi-
gations. It is e.g. the monotonic growth of density reg-
ulated populations that lead many biologists towards
external explanations for the observed population dy-
namics. But internal population regulation is not re-
stricted to density regulation, as intra-specific natu-
ral selection is also regulating the growth and abun-
dance of populations (Witting 1997, 2000). From an
eco-evolutionary point of view, the lack of fit between
traditional single-species population regulation theory
and data is not surprising, as it assumes that natural
selection does not affect population dynamics. Hence,
I analyse 3,852 population dynamic timeseries in an
attempt to estimate if natural selection is the missing
population regulation component that will make our
single species model work as a first approximation to
the population dynamics of birds and mammals.

1.1 On natural selection regulation

With the Malthusian parameter r being the natural se-
lection fitness of the individual (Fisher 1930), and the
average Malthusian parameter being the exponential
growth rate of the population, the population dynamic
growth rate is the trait that is exposed to the strongest
natural selection, capturing the natural selection vari-
ation in other traits. It is therefore not surprising if
natural selection affects population dynamic growth.

A first attempt to include evolution in population dy-
namics was based on self-regulation by group-selection
(Wynne-Edwards 1959, 1986), relating to the Chitty
(1960) hypothesis. This approach, however, was crit-
icised for unrealistic assumptions (Stenseth 1981). I
use a different game theoretical selection that was inte-
grated into population dynamic theory about 25 years
ago, focussing on individual selection by intra-specific
density dependent interactive competition (Witting
1997, 2000). These interactions generate a population
dynamic feedback selection, with the resulting models
including regulation from both density dependent com-
petition and density frequency dependent natural selec-
tion.

This regulation by natural selection accelerates pop-
ulation dynamic growth at abundancies below the nat-
urally selected population dynamic equilibrium, and
decelerates growth above, generating cyclic dynamics
that converge on hyperexponential growth at zero abun-
dance (Witting 2000). The predicted population cycles
are phase-forgetting damped in most cases, with am-
plitudes and cyclic regularities that dependent on the
magnitudes and frequencies of external perturbations.
This dynamics successfully replicates the population
cycles of forest insects (Witting 1997, 2000) and the
delayed recovery of large whales following commercial
exploitation in past centuries (Witting 2013).

Where density regulation suppresses population dy-
namic growth by density dependent competition, selec-
tion regulation accelerates and decelerates population
growth dependent upon the distribution of differences
in the Malthusian parameter across the individuals in
the population. This intra-population growth differen-
tiation is under active feedback selection from density
dependent interactive competition (Witting 2000), and
it is selected as a balance between the quality-quantity
trade-off and the interactive quality that individuals use
to monopolise resources during interactive competition.
Where the quality-quantity trade-off selects for a de-
cline in quality and increased reproduction, interactive
competition selects for increased quality and decreased
reproduction, with the two selection forces balanced
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against one another at the naturally selected popula-
tion dynamic equilibrium.

The distinction between density regulation and se-
lection regulation is clear on theoretical grounds. But
to play a real role the regulating force must change
across the densities experienced by natural populations.
This is expected for selection regulation by the differ-
entiated selection for increased and decreased growth
below and above the population dynamic equilibrium.
The evolutionary scope of this naturally selected pop-
ulation dynamic equilibrium consolidates this expecta-
tion, as the equilibrium is also a selection attractor that
explains the evolutionary existence of multicellular ani-
mals with non-negligible body masses, sexual reproduc-
tion, and inter-specific body mass allometries (Witting
2002, 2017). If the feedback attractor did not balance
the two opposing forces of selection, we should see ei-
ther a selection collapse towards asexual self-replicating
cells, or intra-specific naturally selected arms races that
would cause the extinction of populations.

Selection regulation is furthermore supported by em-
pirical studies on population dynamic responses to
natural selection. This evidence includes i) a two-
generation cycle in the abundance and competitive
quality of side-blotched lizard (Uta stansburiana) in
response to selection by density dependent interactive
competition (Sinervo et al. 2000), ii) a selection ac-
celeration of the population dynamic growth rate by
up to 40% over few generations (Turcotte et al. 2011),
iii) the selection of faster-spreading Covid-19 variants
generating hyperexponential growth (Halley et al. 2021;
Pavithran and Sujith 2022), and iv) an increasing num-
ber of eco-evolutionary studies that document evolu-
tionary dynamics on ecological timescales (e.g. Thomp-
son 1998; Saccheri and Hanski 2006; Coulson et al.
2011; Brunner et al. 2019), including v) evolution-
ary rescue where selection accelerates the growth rate
turning a population decline into increase (e.g. Go-
mulkiewicz and Holt 1995; Agashe 2009; Bell and Gon-
zalez 2009).

Additional evidence comes from the otherwise un-
resolved issues with population dynamic cycles, where
the selected change in population growth follows from
selected changes in the life history. This prediction
includes selection for lower reproduction, larger body
masses, increased competitive behaviour like aggres-
sion, kin groups, and more interacting males at high
population densities, and selection for the opposite at
low densities (Witting 1997, 2000). Being widespread in
natural populations with cyclic dynamics, these phase
related life history changes provide plenty of literature
evidence in favour of selection regulation. This includes

e.g. a body mass cycle in the Daphnia experiments of
Murdoch and McCauley (1985), with larger individu-
als occurring mainly in the late peak phase of a cycle,
and smaller individuals mainly in the early increasing
phase (Witting 2000). Similar changes in body mass
are widespread in voles and lemmings with cyclic dy-
namics (e.g. Boonstra and Krebs 1979; Lidicker and
Ostfeld 1991; Norrdahl and Korpimäki 2002), and they
have been observed in snowshoe hare (Hodges et al.
1999) and cyclic forest insects (Myers 1990; Simchuk et
al. 1999).

Naumov et al. (1969) found the percentage of males
to increase in small rodents when densities are high,
while females predominate during the low phase. Other
cases of an increased male fraction with increased
density include white-tailed deer (Odocoileus virgini-
anus) (McCullough 1979) and northern elephant seal
(Mirounga angustirostris) (Le Boeuf and Briggs 1977).
Individuals of voles and red grouse (Lagopus lagopus
scotica) are more aggressive at high than low popula-
tion densities, with red grouse having larger kin groups
evolving during the increasing phase of a cycle (e.g.
Boonstra and Krebs 1979; Matthiopoulos et al. 2003;
Piertney et al. 2008).

When evaluating evidence for or against selection
regulation it is essential to realise that selection regula-
tion is the complete response of the population dynamic
growth rate to natural selection. Genetic evolution is
one potential response. Others include changes in ma-
ternal effects and social behaviour, long-term selected
phenotypic plasticity in physiological and behavioural
traits allowing individuals to respond directly to the
cyclic change in the selection pressure, and epigenetic
changes. Cultural inheritance is another factor, where
most offspring may balance their quality/quantity in-
vestment in their offspring following the balance of their
parents, with fewer offspring choosing another balance
and thus maintaining the cultural heritable variance of
the population.

As it is the joint selection response across these fac-
tors and more that generates the change in population
dynamic growth, we cannot exclude selection regula-
tion just because one component—like e.g. the genetic
variance—is insufficient to account for the observed
changes. It is like density regulation, where we do not
exclude potential regulation just because we have not
yet observed the underlying mechanistic details.

While it is impossible to exclude density regulation
and selection regulation a priori, there are plenty of
studies that estimate the existence and force of den-
sity regulation from statistical analyses of timeseries of
abundance data (e.g. Turchin and Taylor 1992; Sibly
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et al. 2005; Knape and de Valpine 2012). I aim to
estimate not only the potential presence of density reg-
ulation but also of selection regulation as it is possible
to distinguish between the two regulating forces statis-
tically when we analyse timeseries of abundance esti-
mates. This is possible because density regulation de-
termines the growth rate as a monotonically declining
function of density, while population dynamic feedback
selection accelerates and decelerates the growth rate as
a function of the density frequency dependent selection.
The two regulations are thus shaping the dynamics in
different ways, allowing us to estimate the two types of
regulation when population dynamic models are fitted
to timeseries of abundance estimates. I use this ability
in this first large-scale analysis that estimates the pres-
ence and strength of density and selection regulation
across almost four thousand populations of birds and
mammals. This should show if selection regulation is
weak, or whether it is so widespread and strong that
we should include it in base-case population dynamic
modelling.

2 Method

2.1 Data

To estimate density and selection regulation, I fit-
ted population dynamic models to timeseries of abun-
dance estimates. These were obtained from the Liv-
ing Planet Index (LPI 2022), the North American
Breeding Bird Survey (BBS; Sauer et al. 2017), the
PanEuropean Common Bird Monitoring Scheme (EU;
PECBMS 2022), the Netwerk Ecologische Monitoring
(NET; Sovon 2022), the Swiss Breeding Bird Index
(SWI; Knaus et al. 2022), the British Trust for Or-
nithology (BTO 2022), the Danish Ornithological Soci-
ety (DOF 2022), and Svensk F̊ageltaxering (SWE; SFT
2022).

Having different origin and scales of observation, the
timeseries of especially the LPI are of varying quality.
Thus, I used only timeseries with more than 10 abun-
dance estimates over at least a 15-year period, result-
ing in 3,369 timeseries analysed for birds and 483 for
mammals, with timeseries scaled for a geometric mean
of unity. To avoid confounding effects, models were
used for further analysis only if the mean of the resid-
uals were not significantly different from zero (p < 0.05
student’t), there were no significant autocorrelation in
the residuals (lag 1 and 2), no significant correlation
between the residuals and the model, and the model
explained at least 50% of the variance.

I selected a subset of high-quality data that I anal-

ysed separately as a control. Most of the bird time-
series are standardised indices from point-counts, gen-
erated from indices for individual observers on individ-
ual routes with a given number of geographically fixed
point-counts that are counted in the same way at the
same time each year. The calculation of these indices
is very standardised, correcting for observer and severe
weather. Given a sufficient number of routes, these
timeseries are of high quality.

A potential issue with bird indices is that their geo-
graphical coverage may not necessarily reflect individ-
ual populations. Population dynamics over large ar-
eas are often spatially synchronised (e.g. Ranta et al.
1995; Paradis et al. 1999; Liebhold et al. 2004), and
to account for this I restricted my control timeseries
to the population dynamics delineated indices (PDDIs)
that Witting (2023b) compiled from the North Ameri-
can Breeding Bird Survey (Sauer et al. 2017). These are
calculated from more than six million observations from
USA and southern Canada, providing yearly abundance
estimates for 51 years. Starting from indices that cover
a 15x7 longitudinal/latitudinal grid of the whole area,
neighbouring indices with synchronised dynamics were
lumped into larger areas, estimating 462 populations
with different dynamics (Witting 2023b). The differ-
ent PDDIs of a species are geographically separated at
boundaries where the spatially synchronised dynamics
desynchronise.

2.2 Population models

I incorporated the species-specific age structured de-
mography into my models to scale them to the appro-
priate biological timescale, and account for the associ-
ated inherent delays in the dynamics. As the age struc-
tured demography cannot usually be estimated from
timeseries, I obtained the equilibrium demographic pa-
rameters of all species from Witting (2024). Keeping
these parameters fixed for each species, I estimated only
the two regulation parameters and a few initial condi-
tions from the abundance data. I used the equilibrium
age structure as the initial age-distribution and, when
necessary, I rescaled the yearly parameters for 3, 6, or
12 time-steps per year keeping the projection timesteps
shorter than the age of maturity.

I developed exponential, hyperexponential, density
regulated, and selection regulated models for each
species. I found the best-fitting-hypothesis by the
Akaike information criterion (AIC, Akaike 1973) to
trade-off the number of parameters (from 2 to 5) against
the likelihood of each model. This allowed me to esti-
mate the relative probability of models with (hyperex-



L. Witting (2023): Selection regulation in birds & mammals 5

ponential & selection regulated) and without (exponen-
tial & density regulated) selection.

As the AIC chose selection-based models most often
(see result section), I ran a second AIC model-selection
to estimate the best selection regulated models for all
populations. In addition to a stable equilibrium, this
second selection included models with a linear trend in
equilibrium density. This allowed me to quantify not
only the relative strengths of regulation by density and
selection, but to estimate also if population trends are
indicators of underlying changes in the external envi-
ronment (assuming that a change in equilibrium reflects
improved or deteriorating external factors).

I made regulation by density and selection operate
on the birth rate (m = m̃/m∗) and age of reproduc-
tive maturity (am = ãm/a

∗
m) by changes in relative

parameters (m̃ and ãm) that were set to unity at pop-
ulation dynamic equilibrium (m∗ and a∗m). As I fitted
the 1+ component of the population to the abundance
data, the estimated regulation includes regulation on
offspring survival. Hence, I covered regulation on the
three life history parameters that are most sensitive to
density dependent changes, allowing for regulation on
am for an extended analysis of the PDDI timeseries
only.

The Supplementary Appendix describes the selected
regulated model, with essential differences between the
four population models described below.

Exponential growth. This model has constant life
history parameters, with the relative birth rate (m̃) and
the initial abundance (nt) estimated from data.

Hyperexponential growth. The age structured
abundance (na,t) is the only initial condition of the
exponential and density regulated models. A vector
of competitive quality by age (qa,t) is an extra initial
condition in the selection models. This vector evolves
with time, with selection for offspring of increased qual-
ity when the abundance is above the equilibrium abun-
dance, and selection for a decline in quality when the
abundance is below the equilibrium.

The age structured quality defines the age structured
relative birth rate

m̃a,t = 1/qa,t (1)

and relative reproductive maturity (when included for
PDDI timeseries)

ãm,a,t = qa,t (2)

with q∗ = 1 for all a representing the equilibrium with
no growth.

Following the logic of the secondary theorem of nat-
ural selection (Robertson 1968; Taylor 1996), the selec-
tion induced change in competitive quality—and thus
also in reproduction and reproductive age—is

q0,t = qte
−γι (3)

with average offspring quality (q0) being a product be-
tween the average quality of the mature component

qt =

∑
a|am,a,t≤a qa,tna,t∑
a|am,a,t≤a na,t

(4)

and a selection response e−γι , where

γι = −σ ∂ri/∂ ln qi|qi=q (5)

is the product between the selection gradient
(∂ri/∂ ln qi|qi=q) across variants (i) and the response
(σ ≥ 0) of the population per unit selection, with σ re-
ducing to the additive genetic variance for genetic evo-
lution.

When there is no interactive competition and all
individuals have equal access to resources, the intra-
population variation in the growth rate of a discrete
model is ri ∝ − ln qi from eqn 1, with a selection gra-
dient of ∂ri/∂ ln qi|qi=q = −1 with γι = σ > 0. This is
the limit case of hyperexponential growth at zero pop-
ulation density. Yet, I allowed for positive and negative
γι values to capture constantly accelerating (γι > 0)
and decelerating (γι < 0) growth rates (γι = 0 is ex-
ponential growth). As the selection gradient on the
per-generation growth rate is − ∂ri/∂ ln qi|qi=q, the ac-
celeration/deceleration of the growth rate is

ṙ = dr/dt = γι (6)

The intra-population variation and the resulting pop-
ulation response of eqns 5 and 6 represent the under-
lying natural selection. Yet, it is not necessary to in-
clude this modelling of the intra-population variation
into the population dynamic equations because the lat-
ter operates from the average response that is captured
by eqns 3 and 4.

The hyperexponential model is structurally more
complex than the exponential, but it has a only sin-
gle parameter (γι) and two initial conditions (nt & qt)
to estimate from data.

Density regulated growth. I use the Pella and
Tomlinson (1969) formulation

m̃ = 1 + [m̂− 1][1− (n/n∗)γ ] (7)

that has three parameters (maximum relative birth rate
m̂; density regulation γ; equilibrium abundance n∗) and
one initial condition (nt) to estimate from data.
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Selection regulated dynamics. The selection reg-
ulated model includes density regulation

mt = m∗m̃t(n
∗/nt)

γ (8)

am,t = a∗mãm,t(nt/n
∗)γ

as log-linear deviations from the equilibrium life history,
with density regulation on am occuring only with am
selection in the extended PDDI analysis.

The changes in competitive quality from the popu-
lation dynamic feedback selection of density dependent
interactive competition, was derived by Witting (1997,
2000) as

q0,t = qt(nt/n
∗)γι (9)

with the selection induced acceleration/deceleration of
the growth rate

ṙ = γι ln(n∗/nt) (10)

being a log-linear function of the density dependent
ecology.

The selection behind eqns 9 and 10 is based on the bi-
ased resource access from the density frequency depen-
dent interactive competition. The explicit modelling
of the selection requires equations that account for the
intra-population variation in competitive quality and
resource access (Witting 1997, 2000). This produces
the population level response of eqn 9 that is incorpo-
rated directly into the population dynamic equations.

The dynamics of population dynamic feedback selec-
tion is cyclic. Thus, I calculated the cycle period (T , in
generations) and damping ratio (ζ) to characterise the
dynamics. The damping ratio is zero for a stable cycle,
increasing to unity for the monotonic return of density
regulated growth. I calculated the damping ratio

ζ =
1√

1 + 4π2/δ2
(11)

by the logarithmic decrement δ = ln(np,1/np,2) of the
two successive abundance peaks (np,1 and np,2) that
follow from an equilibrium population that is initiated
with a positive growth rate where qa,t = 2q∗/3. The
estimated period (T ) is the number of generations be-
tween these two abundance peaks.

When the γι/γ-ratio increase above one the dynam-
ics become unstable with amplitudes that increase over
time instead of dampening out. In these cases, I re-
verted np,1 and np,2 in the estimate of δ = ln(np,2/np,1)
and multiplied the ratio by minus one, so that negative
ζ values refer to exploding cycles, with the rate of ex-
plosion increasing as ζ declines from zero to minus one.

The selection regulated model has three parameters
(γ, γι, & n∗) and two initial conditions (nt & qt) to
estimate from data.

2.3 Model fitting & model selection

I used the likelihood (L) maximum to estimate the pa-
rameters of all models given log normally distributed
abundance data

lnL = −
∑
t

[ln(ñt/nt)]
2

2cv2t
+ ln cvt (12)

where ñt is the 1+ index estimate in year t, nt the cor-

responding model estimate, and cvt =
√
c̃v2t + cv2 with

c̃vt being the coefficient of variation of the index esti-
mate, and cv additional variance that is not captured
by the data. The latter is estimated by the likelihood
fitting, capturing random variation in the dynamics of
the population and variation in the population’s avail-
ability to the yearly census.

I projected each model for 100,000 random parame-
ter sets, applying a Quasi-Newtonian minimiser to the
100 best fits. Each of these minimisers located a local
likelihood maximum, with the global maximum being
the maximum across the local maxima. To avoid fit-
ting fluctuating or chaotic dynamics to between-year
variation in uncertain abundance estimates, I placed
an upper limit of 1.5 on the estimates of γ and γι.

The global maximum likelihood was converted to
AIC [α = 2(k − lnL), k nr. of model parameters] to
select the best model for each species. I calculated
the fraction of the AIC selected models that included
selection, and the distribution of the probability ratio
p(s/d) = e(αs−αn)/2 of selection (s) versus non-selection
models (d), with the s and d models being hyperex-
ponential versus exponential, or density regulated ver-
sus selection regulated, depending upon the best AIC-
fitting model.

I allowed one year of catastrophic survival for ten
populations with a crash in abundance, and for seven
large whale populations I subtracted annual catches
from the dynamics following Witting (2013; data from
https://iwc.int).

3 Results

I analysed 3,369 and 483 timeseries for 900 and 208
species of birds and mammals, with population models
for 2,058 bird and 290 mammal populations passing the
minimum fitting criterion during the first round of AIC
model selection.

For the 2,348 timeseries with satisfactory models, the
AIC selection chose selection-based models in 79% of
the cases (79% for birds & 79% for mammals), with the
selection-based models being 780 (se:1.3) times more
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Figure 1: Examples of selection-regulated models fitted to population dynamic timeseries. Dots are index series of abundance,

red lines the estimated equilibria, and green curves the model projections. Headings: name; id. nr; data reference; s:γι & γι/(γι + γ)

in %; d:damping ratio; p:period in generations; v:explained variance in %.
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Figure 2: Distributions of the strength of selection regulation [divided by total regulation; γι/(γι + γ)], the damping ratio,
and population period of the final AIC selected models for 2,480 bird and 321 mammal populations.

probable on average (geometric mean) than population
dynamic models with no selection (based on relative
AIC). The AIC selection chose selection regulated mod-
els in 43% of the cases, followed by 35% hyperexpo-
nential, 14% exponential, and 7.6% density regulated
models.

Selection is even more pronounced in the PDDI con-
trol timeseries. Here, the AIC included selection in 92%
of 267 chosen models, with selection-based models be-
ing 150,000 (se:2) times more probable on average than
non-selection models. The AIC selection chose selec-
tion regulated model in 69% of the cases, followed by
23% hyperexponential models, 4.9% exponential, and
3.4% density regulated models.

With selection regulation covering all models (expo-
nential when γ = γι = 0; hyperexponential when γ = 0
& γι 6= 0; density regulated when γ > 0 & γι = 0), I use
the second AIC selection of selection regulated models
with and without a change in equilibrium to describe
the dynamics. This resulted in 2,801 accepted mod-
els (2,480 for birds; 321 for mammals) that explained
80% of the variance in the data, on average. 24 of the
models are plotted in Fig. 1, with the Supplementary
Information showing all accepted models.

The estimated median selection regulation (γι) is
0.36 (se:0.01) for birds and 0.72 (se:0.032) for mam-
mals, with median density regulation (γ) being 0.31

(se:0.0088) for birds and 0.31 (se:0.028) for mammals.
The left plots in Fig. 2 show the distributions of the
strength of selection regulation relative to total regula-
tion [i.e., γι/(γ+γι)] across all timeseries with accepted
selection regulated models. With median estimates of
0.55 (se:0.0058) for birds and 0.58 (se:0.017) for mam-
mals, selection regulation is equally or more important
than density regulation in most populations, with me-
dian regulation ratios (γι/γ) of 1.2 (se:0.11) and 1.4
(se:0.37). These results resemble those of the PDDI
controls, where relative selection regulation [γι/(γ+γι)]
is 0.53 (se:0.012) at the median across 399 selection
regulated models. Allowing for regulation on reproduc-
tive maturity among the PDDI controls, 47% of 408
accepted selection regulated models were AIC-selected
with regulation on both the reproductive rate and age
of maturity, with a median relative [γι/(γ + γι)] selec-
tion regulation of 0.61 (se:0.019) across all models.

The distributions of regulation estimates cover the
range from almost pure selection regulation to almost
pure density regulation. Only 7.3% of the bird and
6.5% of the mammal populations have selection reg-
ulation below 10% of total regulation by density and
selection. These results cannot support the hypothe-
sis that natural populations of birds and mammals are
predominantly density regulated.

Where density regulated growth returns monotoni-
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cally to the carrying capacity with a damping ratio
around unity (like top left plot in Fig. 1), selection
regulated populations have damped to stable popula-
tion cycles (Fig. 1), with damping ratios that decline to
zero for stable cycles. Some populations may even have
exploding cycles with negative damping ratios during
smaller time periods, although timeseries with negative
damping ratio estimates may reflect uncertainty in our
estimation of regulation.

The middle plots in Fig. 2 show the distributions
of the estimated damping ratios. With median damp-
ing ratios around 0.12 (se:0.0071) and 0.062 (se:0.021)
the population dynamics of birds and mammals is best
characterised as strongly cyclic. 83% of the bird popu-
lations, and 85% of the mammals, have damping ra-
tios that are smaller than 0.5. Only 7.3% of the
bird populations, and 7.8% of mammals, have strongly
damped density regulation like growth with damping
ratios above 0.9.

The right plots in Fig. 2 show the distributions of the
periods of the population cycles. Only 3% of the esti-
mated periods are shorter than five generations. The
distributions have long tails toward long periods, and
they peak in the lower range with 46% of all birds, and
62% of all mammals, having periods below 10 genera-
tion. Median estimates are 11 (se:86) generations for
birds and 7.9 (se:180) for mammals, and the period in-
creases with stronger damping. The median period in-
creases from 8.3 (se:0.99) and 7.2 (se:0.85) generations
for birds and mammals with stable dynamics (damping
ratios around zero), to 28 (se:9.5) and 15 (se:1.8) for
damping ratios around 0.8.

Where density regulated populations tend to decline
only if the environment deteriorates with a declining
equilibrium abundance, selection regulated populations
tend to decline about 50% of the time when the equilib-
rium is stable, declining, or increasing (Fig. 1, second
line). Across the AIC chosen selection regulated mod-
els, the equilibrium abundancies increase for 30% and
21% of the bird and mammal populations and decline
for 29% and 14%. For intervals where the estimated tra-
jectories are either declining or increasing, 76% of the
population dynamic declines were not associated with
an estimated decline in the equilibrium abundance, and
that 77% of the population dynamic increases were not
associated with an equilibrium increase. In fact, 23% of
the population declines had increasing equilibria, and
27% of the population increases had declining equilib-
ria.

4 Discussion

As it is impossible to exclude both density regula-
tion and selection regulation a priori, I estimated the
two regulating forces statistically from timeseries of
abundance estimates in birds and mammals. With
AIC model-selection choosing selection-based models
for 79% to 92% of the analysed timeseries, and median
selection regulation being 1.2 (se:0.11) times stronger
than density regulation, selection regulation is an im-
portant population dynamic component. Pure density
regulation with damping ratios around unity is the ex-
ception rather than the rule and unsuited as base-case
regulation for birds and mammals.

With selection regulation included we have a more
elaborate single-species model that describes a broad
range of the observed population dynamic trajectories
(Fig. 1). These are cyclic with median damping ratios
around 0.12 (se:0.0071) and 0.062 (se:0.021) for birds
and mammals respectively, and population dynamic pe-
riods that increase with increased damping, with me-
dians around 8.3 (se:0.99) and 7.2 (se:0.85) generations
for stable cycles with damping ratios around zero.

These results are statistical estimates given the den-
sity regulated and selection regulated models, and they
do not exclude other potential drivers. Yet, my statis-
tical analyses accounted for other factors by including
random environmental variation into estimates of the
additional variance in the timeseries of abundance esti-
mates, and I used linear trends in the equilibrium abun-
dance to capture directional changes in extrinsic factors
like habitats, resources, and predators. The statistical
estimates do not account for secondary effects from e.g.
phase related changes in predation mortality.

Apart from the observed similarity between model
predictions and data, my analysis provides by itself no
direct evidence on the underlying density and selection
response in natural populations. Yet, empirical studies
on population dynamic cycles have already documented
the selection response extensively, with selection regu-
lation resolving paradoxes between non-selection theory
and observed population dynamic cycles.

We saw in the introduction how selection regulation
predicts the widespread—and otherwise unexplained—
phase related changes in a variety of life history traits
for species with cyclic population dynamics. And with
the estimated selection regulated dynamics generating
damped phase forgetting cycles, low amplitude cycles
are not a problem because the cyclic dynamics of se-
lection regulation do not depend on high-density am-
plitudes for the build-up of predators, pathogens, or
other detrimental factors. Selection regulation acceler-



10 bioRxiv 2021.11.27.470201

ates and decelerates population growth in smaller steps
per generation, and there is thus also no longer an is-
sue with a low reproductive rate during the low phase
where density regulation is relaxed.

The observed phase related changes in the life histo-
ries of cyclic populations cannot merely be secondary
effects with no relation to the underlying cause of the
cycles. This is because there will be no cycle in abun-
dance unless there is a cycle in at least one life history
parameter. The life history cycles are ultimately pre-
dicted by population dynamic feedback selection, and
they are the proximate cause of the cyclic dynamics
that maintains the cyclic selection for their continued,
or damped, existence.

There is no reason to expect that the statistical sup-
port for selection regulation is an artefact of rejecting an
unrealistically simple density regulated model. This is
because selection regulation could, at least in principle,
operate as density regulation resulting in an equally in-
flexible model, despite of the increased complexity im-
posed by selection. It is only because regulation by
density and selection operates structurally differently
on the dynamics that we can distinguish between the
two components statistically in timeseries of abundance
estimates. And AIC model-selection is only choosing
selection regulated models over density regulated mod-
els because the increased dynamic flexibility comes at
a low additional parameter cost. We can conclude that
the population dynamics of birds and mammals support
the population regulation structure of natural selection.

Delayed density regulated models have a similar sta-
tistical advantage, but they do not evaluate explicit bio-
logical hypotheses. A delayed regulation from explicitly
identified inter-specific interactions should instead use
a mechanistic model that includes the age structured
delays of the life histories of the interacting species.
This requires additional parameters, and inter-specific
models are typically less parsimonious than selection
regulated models (which have the same number of pa-
rameters as density regulated models, but one extra
initial condition).

Population models with timestep specific environ-
mental perturbations can always generate perfect fits
between theoretical population trajectories and data.
But this requires a unique perturbation to fit for each
timestep in the timeseries, making them even less sta-
tistically supported. In the end, when constructing a
dynamic model for a population, the parsimonious way
is to analyse if the population regulation of the popu-
lation will explain the dynamics of the population.

A partial decoupling between the extrinsic environ-
ment and population growth is one of the more in-

triguing consequences of selection regulation. Tradi-
tional density regulation thinking implies that we need
a change in the extrinsic environment before the direc-
tion of population growth will change. This leads to the
concept of indicators, where the population dynamic
behaviour of indicator species are supposed to reflect
the underlying state of the environment (e.g. ASTI
2016; LPI 2022; PECBMS 2022; CSI 2023). While
environmental changes may change the growth direc-
tion of selection regulated populations, the direction of
growth may also change in the absence of environmen-
tal changes. In other words, the growth of populations
are not necessarily indicators of the environment, with
about 75% of the estimated population declines in this
study containing no signal of a deteriorating environ-
ment.

Another interesting consequence relates to the abun-
dance of animals, which is left almost unexplained
by traditional non-selection population dynamic the-
ory (May 2020). This contrasts to population dynamic
feedback selection that explains inter-specific abun-
dance variation as a function of the naturally selected
body mass with superimposed inter-specific competi-
tion (Witting 2023a). The density frequency depen-
dent feedback selection of interactive competition is an
essential factor for our understanding of the life histo-
ries, population dynamics, and abundancies of natural
populations.
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5 Model appendix

The age-structure of each model is determined from
three species specific parameters obtained from Wit-
ting (2024). These are the age of reproductive matu-
rity (first reproductive event) in years (ãm), the annual
rate of reproduction at population dynamic equilibrium
(m̃∗), and the reproductive period (t̃r). These parame-
ters were converted to the appropriate timescale, with
am = ãm/∆t, m

∗ = m̃∗∆t, and tr = t̃r/∆t with
∆t � min(ãm, t̃r) being the timestep of the simula-
tion model in years. The survival of all 1+ age-classes
was then calculated as p = (tr − 1)/tr, with age-class
zero survival being p0 = 2/trm

∗pam−1.
With x� am being the maximum lumped age-class,

the number na,t of individuals of age 0 < a < x at
timestep t is

na,t = pa−1na−1,t−1 (13)

and the number in age-class x

nx,t = pxnx,t−1 + px−1nx−1,t−1 (14)

with pa = p0 for a = 0 and pa = p for a ≥ 1. Let the
number of individuals in each age-class relate to time
just after each timestep transition, with offspring at t
being produced by the t− 1 individuals that survive to
the t − 1 → t transition, with the density dependent
ecology being approximated by the average 1+ abun-
dance of the two timesteps:

n̂t = 0.5
∑
a≥1

na,t + na,t−1. (15)

Together with the quality-quantity trade-off, the

competitive qualities of the individuals define their rel-
ative birth rate

m̃a,t = 1/qa,t (16)

as well as their relative age of reproductive maturity

ãm,a,t = qa,t (17)

with the population dynamic equilibrium having q∗ = 1
for all a. More generally qa,t = qa−1,t−1 and

qx,t =
qx,t−1pxnx,t−1 + qx−1,t−1px−1nx−1,t−1

nx,t
(18)

assuming that there is no change in the quality of a
cohort over time. The quality of offspring

q0,t =

∑
a|am,a,t≤a qa,tna,t∑
a|am,a,t≤a na,t

(
n̂t
n̂∗

)γι
(19)

is the average quality of the mature component multi-
plied by the density dependent selection, with γι being
the selection response.

Density regulation

ma,t = m∗m̃a,t(n̂
∗/n̂t)

γ (20)

am,a,t = a∗mãm,a,t(n̂t/n̂
∗)γ

is formulated as a log-linear deviation from the equi-
librium life history, with γ being the strength of reg-
ulation, and the number of offspring in age-class zero
being

n0,t = 0.5
∑

a|am,a,t≤a

ma,tna,t. (21)

The initial conditions of an iteration are the same
quality across all individuals and the initial abundance
with a stable age-structure

ca = la/
∑
a≥0

la (22)

where l0 = 1, la = p0 p
a−1 for 1 ≤ a < x, and lx =

p0 p
x−1/(1− p).

The population dynamic behaviour of a discrete ver-
sion of the selection-regulated model was described by
Witting (1997, 2000b). This model has damped popu-
lation cycles when γι < γ, neutrally stable cycles when
γι = γ, and repelling cycles when γι > γ. The popu-
lation period of the stable cycles increases from four to
an infinite number of generations as the γι = γ param-
eters decline from two to zero. For a given γ the period
increases with a decline in γι, i.e., with an increasingly
damped cycle. When, for a stable cycle, γι = γ in-
creases from two to four, there is an extra period in
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Figure 3: Dynamic behaviour. Plot a to d: The γι/γ-
ratio, and period (in years), of a stable population cycle (ζ =
0) as a function of 1/γ (plot a and b) and the reproductive
period (plot c and d for γ = 0.2), for different combinations
of tm and tr. Plot e and f: The damping ratio (ζ) and
population period (T ) as a function of the parameters x ∈
{am, tr, γ, γι, ζ, T}, relative (x/x̂) to x̂ ∈ {am = 1, tr =
2.8, γ = 0.51, γι = 0.76, ζ = 0.21, T = 23}. The dependence
on T in plot e, and on ζ in plot f, is given by their responses
to changes in γι.

the amplitude of the population period, with the latter
declining monotonically to two generations, with the
dynamics becoming chaotic when γι = γ increases be-
yond four.

The age-structured model with overlapping genera-
tions behave in a similar way, but the dynamics depend
on the age of reproductive maturity (am) and the re-
productive period [tr = 1/(1− p)]. The age-structured
model converges on the discrete model as am → 1,
tr → 1, and p→ 0. With no regulation on maturity, the
period (T ) of the stable population cycle remains a de-
clining function of γ (Fig. 3b), with the slope/exponent
(β) of the lnT ∝ β ln γ relation being −0.5 (estimated
by linear regression). The cyclic dynamics become more
and more stable with a decline in γι, but the damping
is also dependent on am and tr. The stable cycle, e.g.,
has a γι/γ ratio that increases beyond unity as am and
tr increase above unity (Fig. 3a and c). For any given
combination of am and tr, the stable cycle has a γι/γ
ratio that is almost constant (Fig. 3a).

For a given γ, the period of the stable population cy-
cle increases almost linearly with an increase in am and

tr (Fig. 3d), with the period dependence on γ being
somewhat elevated relative to the discrete model where
am = tr = 1 (Fig. 3b). Hence, for populations where γ
is independent of am and tr, we can expect an approx-
imate linear relation between the population period T
and life history periods like am and tr.

When only one parameter is altered at the time, the
period is almost invariant of γ (Fig. 3f). This reflects
that the decline in period with an increase in γ for dy-
namics with a given damping ratio, is counterbalanced
by the increase in period that is caused by the increased
stability of the cycle, as the γι/γ ratio—that defines the
damping ratio—declines with the increase in γ. For
single parameter perturbations, the damping ratio is
usually most strongly dependent on γ and γι, showing
only a small increase with tr and a small decline with
an increase in am (Fig. 3e).


