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Abstract Empirical research is increasingly documenting
eco-evolutionary dynamics that shape ecological processes.
I examine the population dynamic implications of this,
analysing whether natural selection improves our ability
to predict population dynamic trajectories. Fitting single-
species population dynamic models to 3,368 and 480 time-
series for 900 species of birds and 208 mammals, I find that
selection-based population dynamic models are 320 (se:1.3)
times more probable on average than models with no selec-
tion. Selection is essential in 76% to 90% of AIC-selected
models, explaining 80% of the population dynamics vari-
ance, with median selection regulation being 1.5 (se:1.1)
times stronger than density regulation. The estimated dy-
namics is cyclic with median damping ratios for birds and
mammals of 0.12 (se:0.0068) and 0.083 (se:0.022), and pop-
ulation periods of 8 (se:0.56) and 6.1 (se:1.1) generations,
given stable cycles with damping ratios around zero. These
results highlight the necessity of integrating natural selec-
tion into population dynamic theory, and they are discussed
in relation to the literature resolving several enigmas of pop-
ulation dynamic cycle.
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1 Introduction

Population regulation shapes the dynamics of natural
populations, but many population trajectories are not
explained by traditional population regulation theory.
Take for example the simple case where a population
declines gradually until the decline stops and the pop-
ulation begins to increase. This is an often-observed
growth pattern, but it is not explained by density-
dependent competition. Dependent upon initial condi-
tions, pure density-regulated populations will only in-
crease, or decline, towards carrying capacity showing no
change in the direction of growth (over-compensation
from strong density regulation does not explain a grad-
ual change in the direction of growth).

For the past century or so, variation in environmental
drivers provided the conceptual solution to the lack of
fit between single-species population regulation theory
and data. These drivers may be density-dependent or

independent, including environmental fluctuations and
climatic change, as well as predators and prey with the-
oretically predicted population dynamic cycles. With
the dynamics of natural populations correlating with
environmental factors (Elton 1924; Koenig 2002; Hu et
al. 2021; Herfindal et al. 2022; Jenkins et al. 2022),
evidence seems to support the view that population
dynamic deviations from monotonic density-regulated
growth follow from external factors in most cases. The
vast majority of the available timeseries of abundance
estimates, however, have no associated data to confirm
the extrinsic hypothesis. It is thus often of limited prac-
tical use, except as the easy explanation for the lack of
fit of deterministic single-species population dynamic
models to data.

Delayed density-regulated models are a practical so-
lution when supporting environmental data are missing,
providing “single-species” models that explain much of
the observed dynamics (e.g., Hutchinson 1948; Witte-
man et al. 1990; Turchin and Taylor 1992; Hörnfeldt
1994; Hansen et al. 1999a,b; Stenseth et al. 2003). But
delayed density-regulated models turn the blind eye to
the real problem: the absence of identified but nec-
essary population dynamic interactions. By explicitly
not incorporating the mechanisms of the delayed regu-
lation, delayed density regulation is a branch of mathe-
matical engineering that is not part of a formal theory
of biology that seeks to explain the observed dynamics
from explicitly identified population biological mecha-
nisms.

If we return to studies with a population biological
focus, papers on ecologically driven dynamics have ad-
vanced by adding stochasticity (Kaitala et al. 1996;
McKane and Newman 2005; Yan et al. 2013), envi-
ronmental oscillations (Post and Forchhammer 2002;
Stenseth et al. 2002; Garciá-Comas et al. 2011; Taylor
et al. 2013), spatial synchrony (Bjørnstad et al. 1999;
Post and Forchhammer 2002; Liebhold et al. 2004;
Hansen et al. 2020), demographic details (Murdoch et
al. 2002; McCauley et al. 2008; Inchausti and Ginzburg
2009; Miller and Rudolf 2011), and higher-dimensional
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interactions (Tyson et al. 2010; Liu et al. 2013; Benincà
et al. 2015) to pairwise consumer-resource interactions
(reviewed by Myers and Cory 2013; Mart́ınez-Padilla et
al. 2014; Barraquand et al. 2017; Krebs et al. 2018; My-
ers 2018; Oli 2019). But, despite of these efforts, endur-
ing enigmas remain unresolved by the broader popula-
tion dynamic theory (Myers 2018; Oli 2019; Andreassen
et al. 2021).

In a non-cyclic environment, density-regulated popu-
lations need trophic interactions for cyclic dynamics in
most cases. Yet, by analysing an isolated Daphnia-algae
system, Murdoch and McCauley (1985) found Daphnia
to cycle with a relatively fixed period independently of
the presence versus absence of a cycle in its prey. Sim-
ilar paradoxes include snowshoe hares that cycle in the
absence of lynx (Keith 1963), and the absence of a firm
predator-prey interaction for one of best documented
cycles in forest insects (Berryman 1996).

Another issue is the widespread presence of popu-
lation cycle correlated life history changes that do not
follow the expectations of density regulation and preda-
tor prey interactions. Where predation affects survival,
“most, if not all, cyclic rodent populations are char-
acterised by phase-related changes in body mass, so-
cial behaviour, . . . and reproductive rates” (Oli 2019).
Other lingering problems include that no experimen-
tal manipulation of predators and resources “has suc-
ceeded in stopping rodent population cycles anywhere”
(Oli 2019), and “how can low amplitude cycles persist
if high densities are required for the build-up of preda-
tors, parasitoids, pathogens or detrimental conditions”
(Myers 2018), and why can reproduction remain low
across generations in the low phases of cycles where it
should be high due to relaxed density regulation?

These issues do not question the general influence of
external factors on population dynamics; but they hint
at the existence of population dynamic mechanisms
that are not sufficiently captured by traditional pop-
ulation dynamic theory. Hence, I take a closer look at
the way populations regulate their growth when other
things are equal, taking the parsimonious view that to
explain the growth patterns of natural populations we
need first of all to understand how they regulate their
own growth, before we involve external factors.

It has historically been our agreed population reg-
ulation concept that sets the stage of our popula-
tion dynamic investigations. It is, e.g., the monotonic
growth of density regulation that has forced biologists
to seek external causes to explain the observed trajec-
tories of many species. But population regulation is
not restricted to density regulation, as population dy-
namic feed-back selection is also regulating the growth

and abundance of natural populations (Witting 1997,
2000b). From the alternative eco-evolutionary point of
view, the lack of fit between traditional single-species
population regulation theory and data is not that sur-
prising, as traditional theory assumes that natural se-
lection does not affect population dynamics. With this
paper I analyse 3,848 population dynamic timeseries to
examine whether natural selection is the missing pop-
ulation regulation component that will make our single
species model work as a first approximation to the gen-
eral population dynamics of birds and mammals.

1.1 On selection regulation

With the Malthusian parameter r being the natural
selection fitness of the individual (Fisher 1930), and
the average Malthusian parameter being the exponen-
tial growth rate of the population (Malthus 1798), the
population dynamic growth rate is the trait that is ex-
posed to the strongest natural selection, capturing the
natural selection variation in other traits. It is therefore
not surprising if natural selection regulates population
dynamic growth.

A first attempt to include evolution in population dy-
namics was based on self-regulation by group-selection
(Wynne-Edwards 1962, 1986, 1993), relating to the
Chitty (1960) hypothesis. This approach was criticised
for unrealistic assumptions (Stenseth 1981, 1995), and
I use a different game theoretical analysis focussing
on individual selection by density-dependent interac-
tive competition. These selecting interactions gener-
ate a population dynamic feed-back that was formu-
lated into a population dynamic model (Witting 1997,
2000a,b), with total regulation from the joint action of
density-dependent competition and density-frequency-
dependent natural selection.

The regulation that is imposed by this selection accel-
erates population dynamic growth at abundancies be-
low the naturally selected population dynamic equilib-
rium, and decelerates growth above, generating cyclic
population trajectories that converge on hyperexponen-
tial growth at zero abundance (Witting 2000a,b). The
predicted population cycles are phase-forgetting being
damped in most cases, with amplitudes and cyclic reg-
ularities that dependent on the magnitudes and fre-
quencies of external perturbations. This dynamics can
replicate the population cycles of forest insects (Wit-
ting 1997, 2000b) and the delayed recovery of large
whales following commercial exploitation in past cen-
turies (Witting 2013).

Where density regulation suppresses the maximum
population dynamic growth rate by density-dependent
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competition, selection regulation is the per-generation
change in the population dynamic growth rate that fol-
lows from the differentiation in the Malthusian param-
eter across the individuals in the population (see eqns 3
and 6 for details). This differentiation reflects a balance
between the interactive quality that individuals use to
monopolises resources during density-dependent inter-
active competition, and the quality-quantity trade-off
that selects for a lower quality and an associated in-
crease in the number of offspring produced from given
amounts of resources.

The distinction between density regulation and se-
lection regulation is clear on theoretical grounds, but
both mechanisms require that the regulating force is
sufficiently strongly differentiated across the popula-
tion densities experienced by natural population. This
is expected for natural selection in most animal pop-
ulations as the feed-back selected population dynamic
equilibrium is a selection attractor that explains the
evolution of multicellular animals with non-negligible
body masses, sexual reproduction, and associated inter-
specific body mass allometries (Witting 2002, 2008,
2017a,b).

While selection regulation is difficult to prove for-
mally from population dynamic timeseries data, there
are many examples of population dynamic responses
to natural selection. This evidence includes a two-
generation cycle in the abundance and competitive
quality of side-blotched lizard (Uta stansburiana) in
response to selection by density-dependent interactive
competition (Sinervo et al. 2000), a selection accelera-
tion of the population dynamic growth rate by up to
40% over few generations (Turcotte et al. 2011a,b), the
selection of faster-spreading Covid-19 variants with hy-
perexponential growth (Baruah 2020; Kupferschmidt
2021; Halley et al. 2021; Pavithran and Sujith 2022),
and an increasing number of eco-evolutionary stud-
ies documenting evolutionary dynamics on ecological
timescales (e.g., Thompson 1998; Law 2000; Sinervo
et al. 2000; Hairston et al. 2005; Saccheri and Hanski
2006; Coulson et al. 2011; Schoener 2011; Turcotte et
al. 2011; Hendry 2017; Brunner et al. 2019), includ-
ing evolutionary rescue where selection accelerates the
growth rate turning a population decline into increase
(Gomulkiewicz and Holt 1995; Agashe 2009; Bell and
Gonzalez 2009; Ramsayer et al. 2013; Bell 2017).

The predicted selection change in the population dy-
namic growth rate follows from an underlying selection
of the life history. This includes selection for larger
body masses, increased competitive behaviour like ag-
gression, kin groups, and more interacting males at high
population densities, and selection for the opposite at

low densities (Witting 1997, 2000b). As these phase-
related life history changes are one of the enduring enig-
mas of population cycles, the prediction has already
been widely reported from populations with cyclic dy-
namics, with plenty of literature evidence in favour of
selection regulation. This includes a body mass cy-
cle in the Daphnia experiments of Murdoch and Mc-
Cauley (1985), with larger individuals occurring mainly
in the late peak phase of a cycle, and smaller individuals
mainly in the early increasing phase (Witting 2000b).
Similar changes in body mass are widespread in voles
and lemmings with cyclic dynamics (Chitty 1952; Hans-
son 1969; Krebs and Myers 1974; Boonstra and Krebs
1979; Mihok et al. 1985; Lidicker and Ostfeld 1991;
Stenseth and Ims 1993; Ergon et al. 2001; Norrdahl and
Korpimäki 2002; Lambin et al. 2006), and they have
been observed in snowshoe hare (Hodges et al. 1999),
cyclic forest insects (Myers 1990; Simchuk et al. 1999),
and the highly depleted population of North Atlantic
right whales (Stewart et al. 2021).

Population dynamic correlated cycles in other traits
have been reported by Naumov et al. (1969) who found
that the percentage of males increased in small rodents
when densities are high, while females predominate dur-
ing the low phase. Other cases of an increased male
fraction with increased density include white-tailed deer
(Odocoileus virginianus) (McCullough 1979) and north-
ern elephant seal (Mirounga angustirostris) (Le Boeuf
and Briggs 1977). Individuals of voles and red grouse
(Lagopus lagopus scotica) are more aggressive at high
than low population densities (Boonstra and Krebs
1979; Stenseth 1982; Watson et al. 1994; Matthiopoulos
et al. 2003; Piertney et al. 2008), and the latter have
larger kin groups evolving during the increasing phase
of a cycle.

To fully anticipate selection regulation it is essen-
tial to realise that it reflects the complete response of
the population dynamic growth rate to natural selec-
tion. This is not restricted to genetic changes, but
may include other selection responses from epigenetic
inheritance, selected changes in maternal effects and
social behaviour, as well as long-term selected pheno-
typic plasticity in physiological and behavioural traits
allowing individuals to respond more directly to cyclic
changes in the selection pressure. Cultural inheritance
is another factor, where most offspring may balance
their quality/quantity investment in their offspring fol-
lowing the balance of their parents, with fewer offspring
choosing another balance and thus maintaining the cul-
tural heritable variance of the population. So, if we ob-
serve an absence of additive genetic variance, we cannot
a priori exclude the potential presence of selection reg-
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ulation; just as we cannot exclude density regulation
when we cannot directly observe the underlying mech-
anism of the density regulation response.

While it is almost impossible to exclude both den-
sity regulation and selection regulation a priori, the two
mechanisms are clearly separated theoretically, and it is
possible to distinguish between them statistically when
we analyse a timeseries of abundance estimates. This is
because the usual form of density regulation determines
the growth rate as a monotonically declining function of
density, while population dynamic feed-back selection
accelerates and decelerates the growth rate as a func-
tion of the density-frequency-dependent selection in the
population (Witting 1997, 2000b). This means that the
two regulations operate structurally differently on the
population dynamics shaping population dynamic tra-
jectories in different ways, and thus the two types of
regulation can be estimated statistically when we fit
population dynamic models to timeseries of abundance
estimates. I will use this ability in this first large-scale
comparison where the strength of selection regulation
is estimated relatively to that of density regulation for
thousands of populations of birds and mammals. It is
this level of data analysis that is required to identify
if selection regulation is so widespread among natural
populations that we need to include it in base-case pop-
ulation dynamic modelling.

2 Method

2.1 Data

To estimate the relative strength of density and se-
lection regulation, I fit population dynamic models to
timeseries of abundance estimates. These data are ob-
tained from the Living Planet Index (LPI 2022), the
North American Breeding Bird Survey (BBS; Sauer et
al. 2017; timeseries compiled by Witting 2023a), the
PanEuropean Common Bird Monitoring Scheme (EU;
PECBMS 2022), the Netwerk Ecologische Monitoring
(NET; Sovon 2022), the Swiss Breeding Bird Index
(SWI; Knaus et al. 2022), the British Trust for Or-
nithology (BTO 2022), the Danish Ornithological Soci-
ety (DOF 2022), and Svensk F̊ageltaxering (SWE; SFT
2022).

Owing to different sources of origin and scales of ob-
servation, the timeseries of especially the LPI are of
varying quality. The aim of my study is not to explain
all these data, but more moderately to estimate the
relative importance of density and selection regulation
across a large number of timeseries, given models that
project the trajectories of the timeseries with a mini-

mum of potential confounding issues. So, to minimise
potential side-effects from heterogeneity, I exclude short
timeseries and fits with statistical issues, and I select a
subset of high-quality data that I analyse separately as
a control.

I include only timeseries with more than 10 abun-
dance estimates over at least a 15-year period, result-
ing in 3,368 timeseries analysed for birds and 480 for
mammals, with timeseries scaled for a geometric mean
of unity. To avoid confounding effects from incomplete
models, they are included for further analysis only if
the mean of the residuals are not significantly different
from zero (p < 0.05 student’t), there are no significant
autocorrelation in the residuals (lag 1 and 2), no signif-
icant correlation between the residuals and the model
projection, and the model explains more than 50% of
the variance in the data.

Most of the bird timeseries are standardised indices
from point-counts, where the overall indices are gen-
erated from indices for individual observers on indi-
vidual routes with a given number of geographically
fixed point-counts that are counted in the same way
at the same time each year. The calculation of these
indices is very standardised, correcting for observer ef-
fects and excluding counts performed in bad weather.
Thus, given a sufficient number of observers/routes and
observations, these bird indices are of high-quality cov-
ering a large number of species.

A potential issue with the bird indices is that their
geographical coverage may not necessarily represent
individual populations. Hence, I restrict my control
timeseries to the population dynamics delineated in-
dices (PDDIs) that Witting (2023a) compiled from the
raw data of the North American Breeding Bird Survey
(Sauer et al. 2017). These are geographically delineated
where the spatially synchronised dynamics of different
synchronisation optima meet, generating population
boundaries with somewhat desynchronised dynamics.
These indices are based on the widely confirmed con-
cept of spatially synchronised dynamics (Moran 1953;
Stenseth et al. 1998; Ranta et al. 1995; Koenig 1999;
Paradis et al. 1999; Haydon et al. 2001; Toms et al.
2005), and they are calculated from more than 6 mil-
lion bird observations, having yearly abundance esti-
mates for 51 years, covering the geographical range of
USA and southern Canada.

For each species, the PDDIs are calculated from up
to 105 independent indices covering a 15x7 longitudi-
nal/latitudinal grid of the whole area. A geographi-
cal clustering routine lumps neighbouring indices with
synchronised dynamics into larger areas, estimating 462
populations with different dynamics (for method details
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see Witting 2023a).

2.2 Population models

I use age-structured models to incorporate the species-
specific age-structured delays into the simulated pop-
ulation dynamic trajectories. I parameterise the age-
structure at population dynamic equilibrium (denoted
by superscript ∗) using the yearly average birth rate
(m∗) of mature females, the average age of reproduc-
tive maturity (a∗m), and the yearly survival of offspring
(p0) and individuals older than one year of age (p).

As the age-structure cannot usually be estimated
from timeseries of abundance estimates, I obtain the
species-specific equilibrium life history parameters from
Witting (2023b), and these estimates are kept fixed
for each species. While these life history parameters
may not necessarily provide the best estimates for all
species, they reflect a combination of data and inter-
specific extrapolations by allometric correlations across
large datasets. Base-case life history models like these
are required to construct age structured population dy-
namic models across a large variety of species.

Having life history estimates for all species, I estimate
only the two regulation parameters and some initial
conditions from the timeseries of abundance estimates.
The stable age-structure at equilibrium is used as an
initial age-distribution, and dependent upon the age of
reproductive maturity of the species, I may rescale the
yearly parameters for 3, 6, or 12 time-steps per year to
keep the timesteps of the projection shorter than the
age of reproductive maturity.

To find the best single-species model given the
age-structure, I develop exponential, hyperexponen-
tial, density-regulated, and selection-regulated models
for each species. I find the best-fitting-hypothesis by
the Akaike information criterion (AIC, Akaike 1973)
to trade-off the number of parameters (from 2 to 5)
against the likelihood of the four models. This allows
me to estimate the relative probability of models with
(hyperexponential & selection-regulated) and without
(exponential & density-regulated) selection.

The selection-based models are most often statisti-
cally preferred over the non-selection models (see result
section). Hence, I run a second AIC model-selection
to estimate the best selection-regulated models for all
populations. In addition to a stable equilibrium, this
second selection includes models with a linear trend in
equilibrium density. This allows me to quantify not
only the relative strengths of regulation by density and
selection, but to estimate also if population trends are
indicators of underlying changes in the external envi-

ronment (assuming that a change in equilibrium reflects
improved or deteriorating external factors).

The response to regulation by density and selection
is set to operate on the birth rate (m = m̃/m∗) and age
of reproductive maturity (am = ãm/a

∗
m) by changes in

relative parameters (m̃ and ãm) that are set to unity at
population dynamic equilibrium. As I fit the 1+ com-
ponent of the population to the abundance data, the
estimated regulations on the birth rate include regula-
tion on offspring survival (p0). Hence, I cover regula-
tion on the three life history parameters that are usually
most sensitive to density-dependent changes, although
regulation on am is allowed only for an extended model-
selection analysis of the PDDI timeseries.

The details of the selected-regulated model are de-
scribed in the supplementary information, with essen-
tial differences between the four population models de-
scribed below.

Exponential growth. This model has constant life
history parameters, with the relative birth rate (m̃) and
the initial abundance (nt) being estimated from time-
series data.

Hyperexponential growth. In the non-selection
models of exponential and density-regulated growth,
the vector of the age-structured abundance (na,t) is the
only initial condition that is projected in time. In the
two selection models there are additional initial condi-
tions that are defined by a vector of competitive qual-
ity (qa,t). This vector evolves with time, with selection
for offspring with increased competitive quality when
the abundance is above the equilibrium abundance of
the selection-regulated model, selection for no change
in quality when the abundance is at the equilibrium,
and selection for a decline in offspring quality when the
abundance is below the equilibrium.

The age-structured quality of the selection models
defines age-structured initial conditions for the relative
birth rate

m̃a,t = 1/qa,t (1)

and relative reproductive maturity (when included in
the selection-regulated model for PDDI timeseries)

ãm,a,t = qa,t (2)

with q∗ = 1 for all a representing an equilibrium with
no growth.

Following the logic of the secondary theorem of nat-
ural selection (Robertson 1968; Taylor 1996), the selec-
tion induced change in competitive quality—and thus



6

also in the birth rate and reproductive age—is

q0,t = qte
−γι (3)

with average offspring quality (q0) being a product be-
tween the average quality of the mature component

qt =

∑
a|am,a,t≤a qa,tna,t∑
a|am,a,t≤a na,t

(4)

and a selection response e−γι , where

γι = −σ ∂ri/∂ ln qi|qi=q (5)

is the product between the selection gradient
(∂ri/∂ ln qi|qi=q) across the quality variants in the pop-
ulation (denoted by subscript i) and the response (σ ≥
0) of the population to this force of selection. The re-
sponse parameter is the additive genetic variance if we
focus exclusively on genetic evolution. Yet, as we deal
with the complete population response to natural se-
lection, we interpret σ as a more general proportional
response of the population per unit selection.

For simplicity briefly consider a discrete model where
r = lnλ ∝ lnm. Then, when there are no inter-
active competition and all individuals have equal ac-
cess to resources, the intra-population variation in the
growth rate is ri ∝ − ln qi from eqn 1, with a selec-
tion gradient of ∂ri/∂ ln qi|qi=q = −1 with γι = σ > 0.
This is the limit case of hyperexponential growth at
zero population density. Yet, for the hyperexponential
models in this paper, I allow γι to take both positive
and negative values to capture the somewhat broader
range of options with a constantly accelerating (γι > 0)
or decelerating (γι < 0) growth rate (γι = 0 is ex-
ponential growth). As the selection gradient on the
per-generation growth rate is − ∂ri/∂ ln qi|qi=q from
ri ∝ − ln qi, the acceleration/deceleration of the growth
rate is

ṙ = dr/dt = γι (6)

The intra-population variation and the resulting pop-
ulation response of eqns 5 and 6 represent the underly-
ing mechanisms of natural selection. Yet, it is not nec-
essary to include this modelling of the intra-population
variation into the population dynamic equations, and
this is because the latter operate from the average re-
sponse that is captured by eqns 3 and 4.

The hyperexponential model is structurally some-
what more complex than the exponential model, yet it
has a single population dynamic parameter only (γι),
just as the exponential model has m̃. But, with two
initial conditions (nt & qt) there are three statistical
parameters to fit.

Density-regulated growth. For density-regulated
growth I use the Pella and Tomlinson (1969) formu-
lation

m̃ = 1 + [m̂− 1][1− (n/n∗)γ ] (7)

that has three parameters (the maximum relative birth
rate m̂, the strength of density regulation γ, and the
equilibrium abundance n∗) and one initial condition
(nt) to estimate from timeseries data.

Selection-regulated dynamics. The selection-
regulated model includes density regulation

mt = m∗m̃t(n
∗/nt)

γ (8)

am,t = a∗mãm,t(nt/n
∗)γ

formulated as a log-linear deviation from the equilib-
rium life history, instead of being formulated from a
hypothetical maximal growth rate (density regulation
on am occurs only with am selection in the extended
analysis of the PDDI timeseries).

The changes in competitive quality—and thus also by
eqns 1 and 2 in the intrinsic birth rate and reproductive
age—from the population dynamic feedback selection of
density-dependent interactive competition, was derived
by Witting (1997, 2000b) as

q0,t = qt(nt/n
∗)γι (9)

with the selection induced acceleration/deceleration of
the growth rate

ṙ = γι ln(n∗/nt) (10)

being a log-linear function of the density-dependent
ecology.

The selection behind eqns 9 and 10 is based on the
biased resource access that emerges when the compet-
itively superior individuals monopolise resources dur-
ing interactive encounters. This selection is frequency-
dependent because the average success of competition
for a given variant depends on the average competitive
quality across the individuals in the population. The
selection is also density-dependent because the aver-
age ability to monopolise resources depends on the fre-
quency by which an individual competes against other
individuals over resources.

The explicit modelling of the selection requires equa-
tions that account for the intra-population variation in
competitive quality and resource access (see Witting
1997, 2000b for details). Yet, this selection produces
the population level response of eqn 9, which can be in-
corporated directly into the population dynamic equa-
tions, selecting for an increase in average quality when
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the abundance is above the equilibrium, and for a de-
cline when the abundance is below.

The population dynamics that follow from the popu-
lation dynamic feedback selection is cyclic. Thus, I cal-
culate the cycle period (T , in generations) and damping
ratio (ζ) to characterise the dynamics. The damping
ratio is zero for a stable cycle, and it increases mono-
tonically to a value of unity for the monotonic return of
typical density-regulated growth. I calculate the damp-
ing ratio

ζ =
1√

1 + 4π2/δ2
(11)

by the logarithmic decrement δ = ln(np,1/np,2) of the
two successive abundance peaks (np,1 and np,2) that
follow from an equilibrium population that is initiated
with a positive growth rate where mt = 1.5m∗. The
estimated period (T ) is the number of generations be-
tween these two abundance peaks.

When the γι/γ-ratio is somewhat larger than one
the dynamics become unstable with amplitudes that
increase over time instead of dampening out. In these
cases, I revert np,1 and np,2 in the estimate of δ =
ln(np,2/np,1) and multiplies the damping ratio by mi-
nus one, so that negative ζ values refer to exploding
cycles, with the rate of explosion increasing with a ζ
estimate that declines from zero to minus one.

The selection-regulated model has three parameters
(γ, γι, & n∗) and two initial conditions (nt & qt) to
estimate from the data.

2.3 Model fitting & model selection

I use maximum likelihood to estimate the parameters
of all models given log normally distributed abundance
data

lnL = −
∑
t

[ln(ñt/nt)]
2

2cv2
t

+ ln cvt (12)

where ñt is the 1+ index estimate in year t, nt the cor-

responding model estimate, and cvt =
√
c̃v2
t + cv2 the

coefficient of variation with c̃vt being the coefficient of
the index estimate in year t and cv being additional
variance that is not captured by the data. The cv pa-
rameter is estimated by the likelihood fitting, and it
captures among others random variation in the true
dynamics of the population and variation in the yearly
availability of the population for the yearly census.

To locate the global likelihood maximum of a model
given an index trajectory, I projected the model for
100,000 random sets of parameters and initial condi-
tions, applying a Quasi-Newtonian minimiser to the

100 best-fitting random sets. Each of these minimis-
ers located a local likelihood maximum given the initial
parameters, and the maximum across the local maxima
was selected as the maximum likelihood. To avoid fit-
ting population models with fluctuating or chaotic dy-
namics to the between-year variation of uncertain abun-
dance estimates, I placed an upper limit of 1.5 on the
minimiser estimates of γ and γι.

The maximum likelihood was converted to AIC [α =
2(k − lnL), k nr. of model parameters], whereafter I
applied two rounds of AIC model selection to all time-
series. The first round used the four models from expo-
nential growth to selection-regulated dynamics to de-
termine whether it is essential to include selection into
population dynamic models or not. Given the distribu-
tion of the AIC-selected models I calculated the frac-
tion of the models that include selection, and the dis-
tribution of the probability ratio p(s/d) = e(αs−αn)/2

of selection (s) versus non-selection models (d), with
the s and d models being hyperexponential and expo-
nential growth when one of these were the best AIC-
fitting model, and the s and d models being selection-
regulated dynamics and density-regulated growth when
one of these were the best model.

The second model-selection included five selection-
regulated models. In addition to the original model
with a stable equilibrium abundance, it included four
versions with a linear trend in the population dynamic
equilibrium (n∗): i) a trend that covered the whole data
period (1 extra parameter); ii) a trend that started af-
ter the first data year (2 extra parameters); iii) a trend
that ended before the last data year (2 extra parame-
ters); and iv) a trend that started after the first year
and ended before the last year (3 extra parameters),
with a minimum allowed trend period around five years.
This last round of model selection was extended with
an additional model-selection for the PDDI timeseries,
which included the five selected-regulated models with
and without additional regulation on the age of repro-
ductive maturity.

For ten populations that experienced an obvious
crash the model selection was allowed to include also
one year of catastrophic survival. For five populations
of large whales, with data obtained from the Inter-
national Whaling Commission (https://iwc.int), I sub-
tracted annual catches from the simulated trajectories
following Witting (2013).

3 Results

A total of 3,368 and 480 timeseries were analysed for
900 and 208 species of birds and mammals, with popu-
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Figure 1: Examples of fits of the selection-regulated model to timeseries of population data. Dots are index series of

abundance, red lines the estimated equilibria, green curves the model trajectories, blue curves scaled nt+1 − nt plots (running from

blue to red dot), and grey lines the intra-population selection gradients that cause growth acceleration/deceleration. s:γι & γι/(γι+γ)

in %; d:damping ratio; p:period in generations; v:explained variance.
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lation models for 1,953 and 254 bird and mammal pop-
ulations passing the minimum fitting criterion during
the first round of AIC model selection.

For these 2,207 timeseries where a satisfactory model
was found, selection-based models were preferred in
76% of the cases (76% for birds & 75% for mammals),
with the selection-based models being 320 (se:1.3) times
more probable on average (geometric mean) than pop-
ulation dynamic models with no selection included
(based on relative AIC). Selection-regulated dynamics
were preferred in 36% of the cases, followed by 40%
hyperexponential models, 15% exponential, and 8.9%
density-regulated models.

The inclusion of selection was more pronounced in
the models of the PDDI control timeseries. These
included selection in 90% of 251 accepted models,
with selection-based models being 43,000 (se:2) times
more probable on average than non-selection models.
Selection-regulated dynamics were AIC-selected in 60%
of the cases, followed by 29% hyperexponential models,
6% exponential, and 4.4% density-regulated models.

With the selection-regulated model allowing for a
continuous shift among the three other population dy-
namic models (exponential when γ = γι = 0; hyperex-
ponential when γ = 0 & γι 6= 0; density-regulated when
γ > 0 & γι = 0), I used the second model-selection be-
tween five selection-regulated models to describe the
dynamics, allowing for a changes in the equilibrium
abundance over time. This resulted in 2,348 and 280
models accepted for birds and mammals, with all mod-
els plotted and listed in the Supplementary Informa-
tion, and some fits to population data shown in Fig. 1.

Most of the estimated trajectories were cyclic around
a stable, increasing, or declining equilibrium. This is
reflected in the estimated regulation, with median se-
lection regulation (γι) being 0.56 (se:0.011) for birds
and 1.2 (se:0.033) for mammals, and median density
regulation (γ) being 0.32 (se:0.0093) for birds and 0.44
(se:0.032) for mammals. Fig. 2 shows the distribution
of the strength of selection regulation relative to total
regulation [i.e., γι/(γ + γι)] across all timeseries with
accepted selection-regulated models. With median es-
timates of 0.6 (se:0.0058) for birds and 0.66 (se:0.017)
for mammals, selection regulation is estimated more im-
portant than density regulation in most populations,
with median regulation ratios (γι/γ) of 1.5 (se:1.1) and
2 (se:1.3). These results resemble those of the PDDI
controls, with relative selection regulation [γι/(γ + γι)]
being 0.58 (se:0.012) at the median across 389 selection-
regulated models. Allowing for regulation on reproduc-
tive maturity among the PDDI controls, 50% of 400
accepted selection-regulated models were AIC-selected
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Figure 2: Selection regulation. Distributions of point
estimates of relative selection regulation (γι/(γ+γι)) across
2,628 accepted selection-regulated models.

with regulation on both the reproductive rate and age
of maturity, having a median relative selection regula-
tion of 0.66 (se:0.015).

The distributions of regulation estimates cover the
range from almost pure selection regulation to almost
pure density regulation (Fig. 2), but only 5.9% of the
bird and 5% of the mammal populations have selec-
tion regulation below 10% of total regulation by density
and selection. The hypothesis that natural populations
of birds and mammals are density-regulated predomi-
nantly was not supported.

Where density-regulated growth returns monotoni-
cally to the carrying capacity with a damping ratio
around unity (as the top left plot in Fig. 1), selection-
regulated populations have damped to stable popula-
tion cycles (Fig. 1), with damping ratios that decline to
zero for stable cycles. Some populations may even have
exploding cycles with negative damping ratios during
smaller time periods, although timeseries with negative
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Figure 3: Damping ratios. Distributions of point es-
timates of damping ratios across 2,628 accepted selection-
regulated models.

damping ratio estimates may reflect uncertainty in our
estimation of regulation.

The distributions of the estimated damping ratios are
shown in Fig. 3. With median damping ratios around
0.12 (se:0.0068) and 0.083 (se:0.022) the general pop-
ulation dynamics of birds and mammals is best char-
acterised as strongly cyclic. 85% of the bird popula-
tions, and 82% of the mammals, have damping ratios
that are estimates to be smaller than 0.5. Strongly
damped density-regulation-like growth with damping
ratios above 0.9 is estimated for 5.4% of the bird pop-
ulations, and 7.5% of mammals.

The distributions of the periods of the population
cycles are shown in Fig. 4. The estimated periods are
nearly always above five generations. Although the dis-
tributions have long tails toward very long periods, they
are highly peaked in the lower range with 53% of all
birds, and 71% of all mammals, having periods below
10 generation. Median estimates are 9.4 (se:59) gener-
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Figure 4: Population periods. Distributions of point
estimates of the population dynamic cycle period (in gener-
ations) across 2,628 accepted selection-regulated models.

ations for birds and 6.6 (se:180) for mammals, and the
period is longer in populations with more damped dy-
namics. The median period increases from 8 (se:0.56)
and 6.1 (se:1.1) generations for birds and mammals with
stable dynamics (damping ratios around zero), to 35
(se:8.4) and 25 (se:3.8) for damping ratios around 0.8.

History is unimportant for density-regulated growth
in the sense that the current environment and density
define the growth rate. But it is essential in selection-
regulated dynamics where the initial life history is
just as important for current growth as the density-
dependent environment. This is the reason for the
cyclic dynamics, where the population may remain sta-
ble, increase, or decline at the equilibrium abundance
dependent upon initial conditions. Where density-
regulated populations tend to decline only if the en-
vironment deteriorates and the equilibrium abundance
declines, selection-regulated populations will often de-
cline about 50% of the time even when the equilibrium
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is stable (2nd top plot in Fig. 1), declining (3rd top plot
in Fig. 1), or increasing (right top plot in Fig. 1).

Across the accepted models that allow for a trend in
equilibrium, the equilibrium abundancies were found to
increase for 28% and 18% of the bird and mammal pop-
ulations, and to decline for 27% and 12%. I we look at
intervals where the estimated trajectories are either de-
clining or increasing, we find that 75% of the population
dynamic declines were not associated with an estimated
decline in the equilibrium abundance, and that 76% of
the population dynamic increases were not associated
with an equilibrium increase. In fact, 23% of the popu-
lation declines had increasing equilibria, and 27% of the
population increases had declining equilibria. A change
in a populations direction of growth is thus not an in-
dicator of a corresponding change in the environment
extrinsic to the population, although it may reflect an
extrinsic change in some cases.

4 Discussion

With selection-based models being preferred for 76%
to 90% of the analysed timeseries, and median selection
regulation being 1.5 (se:1.1) times stronger than density
regulation, selection regulation is estimated as a neces-
sary component of population dynamic models. Pure
density regulation with damping ratios around unity is
the exception rather than the rule and unsuited as base-
case regulation for birds and mammals. With selection
regulation included we have a more elaborate single-
species model that describes a very broad range of the
observed population dynamic trajectories (see the vari-
ety of fits in Fig. 1). These are generally cyclic with
median damping ratios around 0.12 (se:0.0068) and
0.083 (se:0.022) for birds and mammals respectively,
and population dynamic periods that increase with in-
creased damping, with medians around 8 (se:0.56) and
6.1 (se:1.1) generations for stable cycles with damping
ratios around zero.

This selection regulation resolves several enduring
enigmas of our theory of population dynamic cy-
cles, extending beyond an alternative mechanism when
predator-prey interactions fail. We have already in
the introduction seen how selection regulation predicts
the widespread—and otherwise unexplained—phase-
related changes in the life history traits of species with
cyclic population dynamics. And with most of the
estimated selection-regulated dynamics being damped
phase-forgetting cycles, low amplitude cycles are not a
problem because the cyclic dynamics of selection regu-
lation do not depend on high-density amplitudes for the
build-up of predators, pathogens, or other detrimental
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Figure 5: Population cycles. Fits of selection-regulated
models to abundance estimates of common vole, snowshoe
hare, and willow grouse. Data from Krebs et al. (2014),
Romankow-Zmudowska and Grala (1994), and Watson et
al. (1984). For header details, see Fig. 1

factors.
With the damped phase-forgetting dynamics having

amplitudes that depend on the magnitude of external
perturbations, and persistent cycles that may depend
on repeated perturbations, we can expect a diversity of
dynamic trajectories across the populations of a given
species, dependent upon fluctuations in the external bi-
otic and abiotic environment. Also, with selection reg-
ulation accelerating and decelerating the growth rate in
smaller steps per generation, there is no longer an issue
with a reproductive rate that remains low across several
generations at a low population density where density
regulation is relaxed. Examples of statistical fits of the
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selection-regulated model to the population cycles of
common vole (Microtus arvalis), snowshoe hare (Lepus
americanus), and red grouse (Lagopus lagopus scotica)
are shown in Fig. 5.

Given the widespread evidence in favour of selection
regulation, and that it is basically impossible to rule
out a priory, it is recommended to estimate both den-
sity regulation and selection regulation as a base-case
when population dynamic models are fitted to data.
It should, however, be kept in mind that my results
are statistical estimates given the selection-regulated
model, and as such they do not exclude other poten-
tial reasons for some of the explained variance. While
my statistical analyses i) lumped random environmen-
tal variation beyond the initial conditions of the models
into estimates of additional variance in the timeseries of
abundance estimates, and ii) used linear trends in the
equilibrium abundance to capture directional changes
in extrinsic factors like habitats, resources and preda-
tors, the statistical estimates are not adjusted for sec-
ondary effects imposed by e.g. phase-related changes in
predation mortality. Thus, should data on per-capita
phase-related predation mortality be available it is rec-
ommended to include them in model fitting to improve
the estimated population dynamic models.

Given that monotonic growth is the exception in
birds and mammals, the devil’s advocate might argue
that the estimated support for selection regulation is
nothing but an artefact of rejecting an unrealistically
simple density-regulated model. This point however
does not provide a suitable alternative, and the con-
clusion is also too hasty as it does not reflect the de-
tails of my study. It is true that a single-species model
that includes both density and selection regulation is
more elaborate than a model that is regulated by den-
sity alone. But it is not given a priory that the former
model is dynamically more flexible than the latter and
thus better suited for the observed dynamics in birds
and mammals. Selection regulation could, at least in
principle, operate in a similar way as density regula-
tion resulting in equally inflexible models despite of the
increased complexity imposed by selection. It is only
because regulation by density and selection operates
structurally differently on the dynamics that the two
components can be distinguished statistically in time-
series of abundance estimates, and it is only because
the increased dynamic flexibility is obtained at a low
additional parameter cost that the selection-regulated
models are preferred over density-regulated models by
AIC model selection. We may conclude that the type of
population regulation structure that is imposed by nat-
ural selection is strongly supported by the population

dynamics of birds and mammals.
Delayed density-regulated models have a similar sta-

tistical advantage, but they are usually not testing
explicit biological hypotheses. A delayed regulation
from explicitly identified inter-specific interactions, e.g.,
should instead be accounted for by mechanistic mod-
els that are structured to incorporate the delays of the
age-structured life histories of the interacting species.
This, however, will typically require the addition of sev-
eral extra parameters, and inter-specific explanations
are thus typically less parsimonious than selection-
regulated explanations (which have the same number
of parameters and one extra initial condition to fit, rel-
ative to density-regulated models).

Almost perfect fits of theoretical population trajecto-
ries to data may always be obtained by adding timestep
specific environmental perturbations to simple models.
But this will normally require many extra time-specific
conditions/parameters to fit per timeseries, and these
methods are then even less statistically supported. In
the end, when constructing a dynamic model for a pop-
ulation, the parsimonious way is to analyse if the pop-
ulation regulation of the population will explain the
dynamics of that population. The model may then be
extended secondarily with explicit inter-specific inter-
actions to fine-tune the estimate or seek alternative ex-
planations should density and selection regulation fail
to explain the dynamics.

Another advantage of incorporating natural selection
relates to animal abundance. Where traditional non-
selection population dynamic theory struggles to ex-
plain the abundance of animals (May 2020), population
dynamic feed-back selection explains much of the ob-
served inter-specific variation in the abundance of birds
and mammals, given as a function of the naturally se-
lected body mass with superimposed inter-specific com-
petition (Witting 2023). It appears that the density-
frequency-dependent feed-back selection of interactive
competition is essential to progress our understanding
of the dynamics and densities of natural populations.
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5 Model appendix

The age-structure of each model is determined from
three species specific parameters obtained from Wit-
ting (2023a). These are the age of reproductive ma-
turity (first reproductive event) in years (ám), the an-
nual rate of reproduction at population dynamic equi-
librium (ḿ∗), and the annual survival (ṕ) of mature
individuals. These parameters were converted to the
appropriate timescale, with am = ám/∆t, m

∗ = ḿ∗∆t,
p = ṕ1/∆t, and ∆t ≤ min(1, ám) being the timestep of
the simulation model in years.

Having estimates of the three parameters on the
timescale of the model, p was used as the survival rate
for all age-classes except age-class zero. To calculate
age-class zero survival, I converted adult survival into
the reproductive period tr = 1/(1−p), to calculate life-
time reproduction R = trm

∗, and lm = 2/R from the
population dynamic equilibrium constraint lmR/2 = 1,
with lm being the probability that a new-born survives
to am. Then, having lm, age class zero survival was
calculated as p0 = lmp

1−am .
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With x� am being the maximum lumped age-class,
the number na,t of individuals of age 0 < a < x at
timestep t is

na,t = pa−1na−1,t−1 (13)

and the number in age-class x

nx,t = pxnx,t−1 + px−1nx−1,t−1 (14)

with pa = p0 for a = 0 and pa = p for a ≥ 1. Let the
number of individuals in each age-class relate to time
just after each timestep transition, with offspring at t
being produced by the t− 1 individuals that survive to
the t − 1 → t transition, with the density dependent
ecology being approximated by the average 1+ abun-
dance of the two timesteps:

n̂t = 0.5
∑
a≥1

na,t + na,t−1. (15)

Together with the quality-quantity trade-off, the
competitive qualities of the individuals define their rel-
ative birth rate

m̃a,t = 1/qa,t (16)

as well as their relative age of reproductive maturity

ãm,a,t = qa,t (17)

with the population dynamic equilibrium having q∗ = 1
for all a. More generally qa,t = qa−1,t−1 and

qx,t =
qx,t−1pxnx,t−1 + qx−1,t−1px−1nx−1,t−1

nx,t
(18)

assuming that there is no change in the quality of a
cohort over time. The quality of offspring

q0,t =

∑
a|am,a,t≤a qa,tna,t∑
a|am,a,t≤a na,t

(
n̂t
n̂∗

)γι
(19)

is the average quality of the mature component multi-
plied by the density dependent selection, with γι being
the selection response.

Density regulation

ma,t = m∗m̃a,t(n̂
∗/n̂t)

γ (20)

am,a,t = a∗mãm,a,t(n̂t/n̂
∗)γ

is formulated as a log-linear deviation from the equi-
librium life history, with γ being the strength of reg-
ulation, and the number of offspring in age-class zero
being

n0,t = 0.5
∑

a|am,a,t≤a

ma,tna,t. (21)
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Figure 6: Dynamic behaviour. Plot a to d: The γι/γ-
ratio, and period (in years), of a stable population cycle (ζ =
0) as a function of 1/γ (plot a and b) and the reproductive
period (plot c and d for γ = 0.2), for different combinations
of tm and tr. Plot e and f: The damping ratio (ζ) and
population period (T ) as a function of the parameters x ∈
{am, tr, γ, γι, ζ, T}, relative (x/x̂) to x̂ ∈ {am = 1, tr =
2.8, γ = 0.51, γι = 0.76, ζ = 0.21, T = 23}. The dependence
on T in plot e, and on ζ in plot f, is given by their responses
to changes in γι.

The initial conditions of an iteration are the same
quality across all individuals and the initial abundance
with a stable age-structure

ca = la/
∑
a≥0

la (22)

where l0 = 1, la = p0 p
a−1 for 1 ≤ a < x, and lx =

p0 p
x−1/(1− p).

The population dynamic behaviour of a discrete ver-
sion of the selection-regulated model was described by
Witting (1997, 2000b). This model has damped popu-
lation cycles when γι < γ, neutrally stable cycles when
γι = γ, and repelling cycles when γι > γ. The popu-
lation period of the stable cycles increases from four to
an infinite number of generations as the γι = γ param-
eters decline from two to zero. For a given γ the period
increases with a decline in γι, i.e., with an increasingly
damped cycle. When, for a stable cycle, γι = γ in-
creases from two to four, there is an extra period in
the amplitude of the population period, with the latter
declining monotonically to two generations, with the
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dynamics becoming chaotic when γι = γ increases be-
yond four.

The age-structured model with overlapping genera-
tions behave in a similar way, but the dynamics depend
on the age of reproductive maturity (am) and the re-
productive period [tr = 1/(1− p)]. The age-structured
model converges on the discrete model as am → 1,
tr → 1, and p→ 0. With no regulation on maturity, the
period (T ) of the stable population cycle remains a de-
clining function of γ (Fig. 6b), with the slope/exponent
(β) of the lnT ∝ β ln γ relation being −0.5 (estimated
by linear regression). The cyclic dynamics become more
and more stable with a decline in γι, but the damping
is also dependent on am and tr. The stable cycle, e.g.,
has a γι/γ ratio that increases beyond unity as am and
tr increase above unity (Fig. 6a and c). For any given
combination of am and tr, the stable cycle has a γι/γ
ratio that is almost constant (Fig. 6a).

For a given γ, the period of the stable population cy-
cle increases almost linearly with an increase in am and
tr (Fig. 6d), with the period dependence on γ being
somewhat elevated relative to the discrete model where
am = tr = 1 (Fig. 6b). Hence, for populations where γ
is independent of am and tr, we can expect an approx-
imate linear relation between the population period T
and life history periods like am and tr. This implies
a population cycle allometry, where T is expected to
scales with the 1/4 and 1/6 power of body mass across
species with intra-specific competition in two and three
spatial dimensions (Witting 1995, 2017).

When only one parameter is altered at the time, the
period is almost invariant of γ (Fig. 6f). This reflects
that the decline in period with an increase in γ for dy-
namics with a given damping ratio, is counterbalanced
by the increase in period that is caused by the increased
stability of the cycle, as the γι/γ ratio—that defines the
damping ratio—declines with the increase in γ. For
single parameter perturbations, the damping ratio is
usually most strongly dependent on γ and γι, showing
only a small increase with tr and a small decline with
an increase in am (Fig. 6e).


