m.r.Life ι**=7/3ψ

bioRxiv 2021.11.27.470201 (2021)Download free pdf

On selection-regulated population dynamics in birds and mammals

Lars Witting

Abstract: I use the North American Breeding Bird Survey (Sauer et al. 2017) to construct 462 population trajectories with about 50 yearly abundance estimates each. Applying AIC model-selection, I find that selection-regulated population dynamics is 25,000 (95%:0.42-1.7e17) times more probable than density-regulated growth. Selection is essential in 94% of the best models explaining 82% of the population dynamics variance across the North American continent. Similar results are obtained for 111, 215, and 420 populations of British birds (BTO 2020), Danish birds (DOF 2020), and birds and mammals in the Global Population Dynamic Database (GPDD 2010).

The traditional paradigm---that the population dynamic growth rate is a function of the environment, with maximal per-capita growth at low population densities, and sub-optimal reproduction from famine at carrying capacities with strong competition for limited resources---is not supported. Selection regulation generates a new paradigm where the world is green and individuals are selected to survive and reproduce at optimal levels at population dynamic equilibria with sufficient resources. It is only the acceleration of the population dynamic growth rate, and not the growth rate itself, that is determined by the density-dependent environment, with maximal growth occurring at the densities of the population dynamic equilibrium.

This preprint is made available under a CC-BY-NC-ND 4.0 International license, with Copyright retained by L. Witting