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Abstract It is shown that the exponents of eight across
species body mass allometries can evolve from the con-
straints associated to the foraging process of mobile organ-
isms. The explained exponents include those of metabolic
rate, lifespan, population density, home range, population
energy use, maximum lifetime reproduction, maximum rate
of population increase, and the level of social behavior.
Some of the theoretically deduced exponents vary with the
dimensionality of the foraging behavior, i.e., they take the
values ±1/2 when foraging occurs in one dimension, ±1/4
and ±3/4 when foraging occurs in two dimensions, and ±1/6
and ±5/6 when foraging occurs in three dimensions. In com-
parison, the empirically established exponents of terrestrial
organisms resemble the theoretical exponents for foraging in
two dimensions, whereas the empirical exponents of pelagic
organisms resemble the theoretical exponents for foraging
in three dimensions.

1 Introduction

In 1883 Rubner proposed that the exponent of the al-
lometric relation between the metabolic rate and body
mass was explained by the surface rule that was meant
to cause thermal homeostasis. However, the surface
rule predicts an exponent of 2/3 while the observed ex-
ponent is 3/4 (Kleiber 1932). Blum (1977) pointed out
that the surface rule actually predicts 3/4 if the world
has four spatial dimensions instead of three. But, the
fourth dimension remains to be discovered. McMahon
(1973, 1975) argues that the metabolic rate is propor-
tional to muscle cross-sectional area and that elastic
similarity predicts a muscle cross-sectional area that is
proportional to body mass raised to the 3/4 power and,
consequently, the metabolic rate should scale to the 3/4
power of body mass. However, “body support for ani-
mals other than the hoofed mammals does not conform
to the elastic similarity model”(Calder 1984; p. 85; see
also LaBarbera 1986). More theoretical work, includ-
ing Reiss (1989), Charnov (1993), and related studies
reviewed by Calder (1984) and Peters (1983), have been
restricted to the deduction of some allometric expo-
nents from other allometric exponents and, thus, this

work does not attempt to explain why 3/4? As LaBar-
bera (1986) concludes: “at present there is no general
explanation for the 3/4 mass exponent for metabolic
rate; the most all-encompassing of design generalities
in biology must, at present, be treated simply as an
empirical fact.”

Besides the 3/4 exponent for metabolic rate the body
mass exponents across mobile species include 1/4 for
lifespan (Bonner 1965), −1/4 for the maximal rate of
population increase (Fenchel 1974), −3/4 for the pop-
ulation density (Damuth 1981, 1987), 1 for home range
area (Schoener 1968; Turner et al. 1969; Harestad and
Bunnell 1979; Calder 1984), 0 for the resource con-
sumed by a population (Damuth 1981, 1987), 0 for max-
imal lifetime reproduction (Charnov 1993), and 1/4 for
the level of social behavior (Peters 1983; Calder 1984).
In this paper I will show that these exponents can evolve
from the constraints by which the foraging process gen-
erates interference among the foraging individuals when
coupled with the constraints by which the exploitation
of an individual inhibits the foraging of that individ-
ual. These constraints imply that the well-known ex-
ponents ±1/4 and ±3/4 are valid for organisms that
forage in two dimensions, while the exponents are ±1/6
and±5/6 for organisms that forage in three dimensions,
and ±1/2 for organisms that forage in one dimension.

I obtain my results by describing the involved pro-
cesses by the allometric traits (Section 3.1 to 3.2), by
optimizing the foraging process (Section 3.3), and by
solving the involved equations to obtain the allometric
exponents (Sections 4.1 to 4.2). Before this is done, I
define some demographic and ecological constraints in
Section 2. Although it is not these latter constraints
that are the proximate causes for the evolution of the
allometric exponents, they are required because they
link the different life history traits together and because
they link the life history traits to the ecology of resource
consumption. A list of the most important symbols is
given in Table 1.
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w Body mass

B Metabolic rate per unit body mass (B ∼ wb)
T Lifespan (T ∼ wt)
N Population density (N ∼ wn)

H Home range (H ∼ wh)
E Resource density (W ∼ we)
α Exploitation efficiency (α ∼ wa)
I Level of intra-population interference
p Survival probability
R0 Lifetime reproductive value
R Lifetime reproduction
ε Consumed energy used for reproduction
f Foraging self-inhibition
g Regulation by intra-population interference

Table 1: A list of the most important symbols.

2 Demography and ecology

One assumption that is central to my study is the
principle of physiological time (Brody 1945). Accord-
ing to this principle the various processes of an organ-
ism occur at a timescale that is inversely proportional
to the metabolic rate per unit mass of that organ-
ism. On empirical grounds this principle is illustrated
by the fact that most life-history timings are propor-
tional to the positive 1/4 power of body mass while the
metabolic rate per unit mass (B) is proportional to the
negative 1/4 power of body mass (reviewed in Calder
1984). This is reflected also in Pearl’s (1928) notion
that the lifespan of an organism is inversely related to
the metabolic rate per unit mass, just like the longevity
of a machine is inversely related to the rate by which
the machine is used. We can formulate this relation be-
tween the maximal lifespan (T ) and the metabolic rate
(B) as

T = ω/B, (1)

where ω is a positive constant of senescence that can
be modified by selection. Although Pearl’s “rate-of-
living” has been questioned (Maynard Smith 1958,
1963; Clarke and Maynard Smith 1961a,b; reviewed in
Rose 1991) we will find that it is sufficiently accurate
in relation to the body mass allometries. To obtain a
measure of longevity that includes potentially immor-
tal organisms (i.e., ω → ∞) we can define the average
lifespan as

T̄ = ω̄/B (2)

ω̄ =

∞∑
x=0

x(lx−1 − lx),

where age (x) and cumulative survival (lx) are scaled
according to the physiological time of the organism, i.e.,
scaled with 1/B. For those potentially immortal organ-
isms that have constant survival per unit physiological
time (pc) the average lifespan of eqn 2 is given as

T̄ =

∞∑
x=0

xpx−1c −
∞∑
x=0

xpxc

B
(3)

=
1

B(1− pc)
.

From eqns 1 to 3 we notice that among the organisms
with a similar lx function, both the average lifespan and
the maximal lifespan are inversely proportional to the
metabolic rate per unit body mass. Hence, the theoret-
ical analysis will be restricted to include only maximal
lifespan (T ) knowing that the allometric dependence
of this parameter will describe the empirical allometry
for average longevity, and the empirical allometries for
other life-history timings.

In relation to fitness the relevant survival component
is survival to the post-reproductive state whereafter
survival is irrelevant (if we assume that post reproduc-
tive individuals cannot enhance the fitness of their off-
spring). This component can be defined as the survival
probability

p = R0/R, (4)

where R0 is the expected life-time reproductive value
and R is the lifetime reproduction of an individual if it
survives to maximal age. In relation to the definition
of p we can think of a bimodal population in which an
individual will die before it reproduces with the prob-
ability 1 − p, while it will survive with the probabil-
ity p, reproduce, and eventually die from senescence.
However, we may also think of p simply as a statis-
tical measure that is defined from age-structured sur-
vival and reproduction. For those organisms that are
potentially immortal and which, per unit physiologi-
cal time, have constant reproduction (mc) and constant
survival (pc) we have that p→∞ because R→∞ and
R0 = mc

∑
pxc → mcpc/(1− pc), with x ∈ {0, 1, 2, . . .}.

More generally

p =

∞∑
x=0

lxmx

∞∑
x=0

mx

, (5)

because R0 =
∑
lxmx and R =

∑
mx, with x ∈

{0, 1, 2, . . .}. Then, if age structured reproduction is
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Fig. 1. Annual adult survival (p) raised to the power of age of first
reproduction (T ) against the body mass (w) on double logarithmic
scale for 114 species of birds. Data from Cramp & Simmons
(1977–1983), Cramp (1985–1992), and Cramp & Perrins (1993).

reproduction and body mass is age independent and,

thus, lifetime reproduction can be given as

R(�)=�T/w, (7)

where � is the energy that is allocated to reproduction

per unit astronomical time and w is the energetic mass

of an offspring. The inverse relationship (trade-off)

between lifetime reproduction (R) and body mass (w)

exists because energy (�) can be used only once.

Equation (6) also implies that an organism is assumed

to have a fixed body mass, while reproduction is

assumed to be phenotypically plastic.

Given the present assumptions, it follows that

the fraction of net assimilated energy allocated to

reproduction is body mass invariant. To see this, recall

that the body mass is assumed to be constant from

birth to death. Hence, net assimilated energy must be

allocated to either reproduction or to metabolism, i.e.,

�A=�+�B where �A is net assimilated energy, �B is

metabolized energy, and � is energy allocated to

reproduction as previously defined. Furthermore,

because a population with stable, or damped,

population dynamics will be situated at the population

equilibrium an average individual will replace itself by

a single individual, i.e., R0=p�T/w=1 and, conse-

quently, �=w/pT. Then, because the energy that is

metabolized is �B=wB and because B=�/T, it follows

that the allocation ratio is

�/�B=(w/pT )/(w�/T )=1/�p=1� �
�

x=0

lx�w0. (8)

Then, as �A=�+�B we have that �A /�=1+�B /� and,

thus, that �=c�A where c=�/(�+�B ) is a positive

constant. We can then simplify the notation by setting

c=1 so that � denote both net assimilation and the

amount of energy that is allocated to reproduction.

If we assume that an individual assimilates all the

energy that it consumes, net assimilation is equal to

�=�E, (9)

where � is the realized resource consumption efficiency

andE is the resource density at the population dynamic

equilibrium.This resource density is defined also by the

following growth equation

dE
.
/dt=E

.
(re−�eE

.
−�N

.
), (10)

where re is the maximal rate of increase in resource

density, −�e is the density regulation in the resource,

N
.
is the density of the consumer organism, and the

superscript dots denote arbitrary densities. The

resource density at the population equilibrium is then

E=Em−�N/�e , (11)

reproduction (mc ) and constant survival (pc ) we have

that p � 0 because R � � and R0=mc�px
c � mcpc /

(1−pc ), with x � {0, 1, 2, . . .}. More generally

p=

�
�

x=0

lxmx

�
�

x=0

mx

, (5)

because R0=�lxmx and R=�mx , with

x � {0, 1, 2, . . .}. Then, if age structured reproduction

is constant, R=�mc and eqn (5) reduces to

p=�−1 �
�

x=0

lx . (6)

From eqn (6) we see that p is expected to be invariant

for organisms with a similar � parameter and similar

lx (and mx ) function(s). As these functions are scaled

according to physiological time we expect that p is

invariant among organisms with a similar bauplan.

One such group is birds, and in Fig. 1 I show that the

invariance of p is confirmed among 114 species when

plotted against bodymass. This invariance suggest that

mortality is selectively neutral on the body mass axis,

i.e., there seems to be no evidence that it is

differentiated mortality that has caused the evolution-

ary differentiation into different body masses. This

result opposes the common assumption in life history

theory that large organisms that mature later suffer

from higher mortality because instantaneous mortality

is constant per unit astronomical time (Bell, 1980;Roff,

1981; Stearns, 1992).

I will deal with a non-structured organism with

non-overlapping generations in order to simplify

the demography. For an unstructured organism

Figure 1: Annual adult survival (p) raised to the power of
age of first reproduction (T ) against the body mass (w) on
double logarithmic scale for 114 species of birds. Data from
Cramp & Simmons (1977–1983), Cramp (1985–1992), and
Cramp & Perrins (1993).

constant, R = ωmc and eqn 5 reduces to

p = ω−1
∞∑
x=0

lx, (6)

From eqn 6 we see that p is expected to be invariant
for organisms with a similar ω parameter and similar
lx (and mx) function(s). As these functions are scaled
according to physiological time we expect that p is in-
variant among organisms with a similar bauplan. One
such group is birds, and in Fig. 1 I show that the invari-
ance of p is confirmed among 114 species when plotted
against body mass. This invariance suggest that mor-
tality is selectively neutral on the body mass axis, i.e.,
there seems to be no evidence that it is differentiated
mortality that has caused the evolutionary differenti-
ation into different body masses. This result opposes
the common assumption in life history theory that large
organisms that mature later suffer from higher mortal-
ity because instantaneous mortality is constant per unit
astronomical time (Bell 1980; Roff 1981; Stearns 1992).

I will deal with a non-structured organism with non-
overlapping generations in order to simplify the demog-
raphy. For an unstructured organism reproduction and
body mass is age independent and, thus, lifetime repro-
duction can be given as

R(ε) = εT/w, (7)

where ε is the energy that is allocated to reproduc-
tion per unit astronomical time and w is the energetic
mass of an offspring. The inverse relationship (trade-
off) between lifetime reproduction (R) and body mass

(w) exists because energy (ε) can be used only once.
Equation 6 also implies that an organism is assumed to
have a fixed body mass, while reproduction is assumed
to be phenotypically plastic.

Given the present assumptions, it follows that the
fraction of net assimilated energy allocated to repro-
duction is body mass invariant. To see this, recall that
the body mass is assumed to be constant from birth to
death. Hence, net assimilated energy must be allocated
to either reproduction or to metabolism, i.e., εA = ε+εB
where εA is net assimilated energy, εB is metabolized
energy, and ε is energy allocated to reproduction as
previously defined. Furthermore, because a population
with stable, or damped, population dynamics will be
situated at the population equilibrium an average in-
dividual will replace itself by a single individual, i.e.,
R0 = pεT/w = 1 and, consequently, ε = w/pT . Then,
because the energy that is metabolized is εB = wB and
because B = ω/T , it follows that the allocation ratio is

ε/εB =
w/pT

wω/T
= 1/ωp (8)

= 1/

∞∑
x=0

lx ∼ w0.

Then, as εA = ε+εB we have that εA/ε = 1+εB/ε and,
thus, that ε = cεA where c = ε/(ε + εB) is a positive
constant. We can then simplify the notation by setting
c = 1 so that ε denote both net assimilation and the
amount of energy that is allocated to reproduction.

If we assume that an individual assimilates all the
energy that it consumes, net assimilation is equal to

ε = κE, (9)

where κ is the realized resource consumption efficiency
and E is the resource density at the population dynamic
equilibrium. This resource density is defined also by the
following growth equation

dE·/dt = E·(re − γeE· − κN ·), (10)

where re is the maximal rate of increase in resource
density, −γe is the density regulation in the resource,
N · is the density of the consumer organism, and the su-
perscript dots denote arbitrary densities. The resource
density at the population equilibrium is then

E = Em − κN/γe, (11)

where N is the consumer density at the equilibrium and
E → Em = re/γe at the limit N → 0.
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In the present study I will partition the realized re-
source consumption efficiency (κ) into three multiplica-
tive components. The first component is the exploita-
tion efficiency (α) that describes the ecological potential
of κ which occurs when competition is purely exploita-
tive and the resource is exploited evenly. The second
component (g) is the regulation of κ as it is caused by
the interactions among the foraging individuals. The
third component (f) is the self-inhibition of κ as it oc-
curs when an individual exploits its own fraction of the
resource more heavily than the population exploits the
total resource. The energy that is consumed by an in-
dividual is then given as

ε = αfgE. (12)

In the following sections we will see that the exponents
of the body mass allometries are explained by the con-
straints that are associated with the two functions f
and g.

3 The foraging process

3.1 Self-inhibition

To formulate self-inhibition consider foraging as it oc-
curs within a home range. In this instance the organism
is likely to forage along some more or less well defined
foraging tracks, and the length (L) of these tracks is
expected to be proportional to the d-th root of the
d dimensional home range (H), i.e., L ∼ H1/d with
d ∈ {1, 2, 3}. At least for mammals this expectation is
not falsified because the length of their foraging bouts
scale to the square root of their home range area (Gar-
land 1983; Calder 1984). The time interval between
track reuse (TV ) is the track distance (L) divided by
the foraging speed (V ), i.e.,

TV = L/V ∼ H1/d/V. (13)

As the foraging speed is proportional to lifespan (Gar-
land 1983; Calder 1984), the time interval between
track reuse scales as

TV ∼ H1/d/T. (14)

The availability of food along the foraging track can be
considered to be proportional to the time interval be-
tween track reuse, as the longer the time period between
foraging events, the more time there is available for the
resource to regrow or to disperse into the foraged area.
Because of this regrowth/dispersal delay, the frequency
of track reuse (1/TV ) will describe the degree to which
an individual will inhibit its own foraging.

The time interval between reforaging as described
by eqn 14 is measured in astronomical time. This im-
plies that self-inhibition as described by the frequency
1/TV is given as an absolute measure. However, self-
inhibition is a relative term; relative to the situation
where no individual reuses its foraging tracks, i.e., rel-
ative to the situation with infinitely large home ranges.
In this default case with no self-inhibition the resource
is reharvested by a given frequency and thus, in order
to describe self-inhibition by the time interval between
track reuse (TV ), we need to scale this interval by the
interval between resource reharvesting in the situation
with infinitely large home ranges. From the principle of
physiological time we expect that the time available for
regrowth/dispersal in the default situation is inversely
proportional to the metabolic rate per unit body mass,
i.e., proportional to lifespan (T ). That is, smaller or-
ganisms are expected to reharvest an area at a faster
pace than larger organisms are. Accepting this scaling,
the scaled Tv is

TV,S ∼ H1/d/T 2. (15)

The foraging efficiency in the presence of self-inhibition
can then be described as

κ = αf(H1/d/T 2), (16)

where f is the self-inhibition function that is expected
to be convex and to increase monotonically from zero
to unity as the size of the home range increases from
zero to infinity. According to eqn 16, we have that,
in the absence of intra-population interference, optimal
foraging will occur at infinitely large home ranges where
self-inhibition is absent.

3.2 Intra-population interference

If the home ranges of two individuals are non-
overlapping, clearly the two individuals cannot meet
and the probability that they will encounter each other
is zero. In general, the probability of an encounter be-
tween two individuals is expected to be proportional
to the relative overlap of their home ranges. At the
population equilibrium the home ranges are expected
to be evenly distributed as shown in Fig. 2 for the two-
dimensional system. Then the home ranges are parti-
tioned into zones that are utilized by a variable number
of individuals, and the number of interference encoun-
ters experienced per individual is proportional to the
total degree of home range overlap. This total degree
of overlap (O) can be described as the average home
range (H) divided by the per capita availability of space
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home range (H) divided by the per capita availability

of space (1/N), i.e., as

O�HN, (17)

where both the home range and the population density

(N) is measured in d dimensions.

The level of interference depends also upon the rate

of foraging, i.e. the faster the foraging tracks are

covered the more often the individuals will encounter

each other. Thus, the number of interference

encounters per individual per unit astronomical time is

proportional to the frequency by which the tracks are

reused, i.e., proportional to the home range overlap

[eqn (17)] divided by the time interval between track

reuse [eqn (14)]. Hence,

I�TH(d−1)/dN, (18)

when the level of interference (I) is proportional to the

number of interference encounters experienced per

individual per unit astronomical time.

The number of encounters depends also upon the

density of the resource. If the resource density is low

the individual will have to cover its foraging tracks at

a fast rate to find sufficient resource, whereas if the

resource density is high the individual need hardly

move in order to find sufficient resource. The level of

interference is then expected to be inversely

proportional to the resource density and we obtain

I=TH(d−1)/dN/E. (19)

The inhibition of foraging that is caused by

intra-population interference is given by the function

g(I). Contrary to self-inhibition ( f ), inhibition by

interference is absent (g=1) when the home ranges are

infinitely small and non-overlapping, and it is at its

maximum (0�g�1) when the home ranges are

infinitely large and completely overlapping.

3.3. the foraging optimum

From the previous two sub-sections we have that the

foraging efficiency is given as

�=�f(H1/d/T 2)g(TH(d−1)/dN/E). (20)

As f increases and g decreases monotonically with H
we might expect that the realized exploitation (�) has

an optimum on the home range axis. We can determine

this optimum by differentiating the foraging eqn (20)

with respect to the home range, and by setting the

derivative equal to zero. Let

f(X)=f(H1/d/T 2), (21)

then, we obtain

d�/dH=(�/d)H(1−d)/dT−2f '(X)g(I)

+(�(d−1)/d)H−1/dTNE−1f(X)g'(I), (22)

where f ' and g' are the derivatives of f and g with

respect to X and I. Setting d�/dH=0 we can reduce

eqn (22) and obtain

f(X)

f '(X)
+

g(I)
g'(I)

1

d−1

EH(2−d)/d

T 3N
=0. (23)

In another unpublished study I have shown that I�w0

when the body masses of the different species are in

evolutionary equilibria. The allometric scaling of the

fraction EH(2−d)/d/T 3N in eqn (23) will then remain the

same if it is multiplied by I=TH(d−1)/dN/E. For T�wt,

H�wh, N�wn, and E�we, the exponent of this

product (I ·EH(2−d)/d/T 3N) is

t+h(d−1)/d+n−e+e

+h(2−d)/d−3t−n=h/d−2t. (24)

This exponent is equal to the exponent of X [eqn (21)]

and, thus,

X�EH(2−d)/d/T 3N. (25)

Because I�w0 it follows that g(I)/g'(I) is body mass

invariant and, thus, we can combine eqn (23) and

eqn (25) in order to reduce eqn (23) to

f(X)

f '(X)
−kX=0, (26)

Fig. 2. An illustration of home range overlap and levels of
intra-population interference for a two-dimensional system.
Hatched areas resemble zones of no interference because they are
used by one individual only. Double-hatched areas resemble zones
of interference between two individuals. Triple-hatched areas
resemble zones with interference among three individuals.

Figure 2: An illustration of home range overlap and levels
of intra-population interference for a two-dimensional sys-
tem. Hatched areas resemble zones of no interference be-
cause they are used by one individual only. Double-hatched
areas resemble zones of interference between two individu-
als. Triple-hatched areas resemble zones with interference
among three individuals.

(1/N), i.e., as
O ∼ HN, (17)

where both the home range and the population density
(N) is measured in d dimensions.

The level of interference depends also upon the rate
of foraging, i.e., the faster the foraging tracks are cov-
ered the more often the individuals will encounter each
other. Thus, the number of interference encounters per
individual per unit astronomical time is proportional to
the frequency by which the tracks are reused, i.e., pro-
portional to the home range overlap [eqn 17] divided by
the time interval between track reuse [eqn 14]. Hence,

I ∼ TH(d−1)/dN, (18)

when the level of interference (I) is proportional to the
number of interference encounters experienced per in-
dividual per unit astronomical time.

The number of encounters depends also upon the
density of the resource. If the resource density is low
the individual will have to cover its foraging tracks at
a fast rate to find sufficient resource, whereas if the re-
source density is high the individual need hardly move
in order to find sufficient resource. The level of inter-
ference is then expected to be inversely proportional to

the resource density and we obtain

I = TH(d−1)/dN/E. (19)

The inhibition of foraging that is caused by intra-
population interference is given by the function g(I).
Contrary to self-inhibition (f), inhibition by interfer-
ence is absent (g = 1) when the home ranges are in-
finitely small and non-overlapping, and it is at its max-
imum (0 ≤ g ≤ 1) when the home ranges are infinitely
large and completely overlapping.

3.3 The foraging optimum

From the previous two sub-sections we have that the
foraging efficiency is given as

κ = αf(H1/d/T 2)g(TH(d−1)/dN/E). (20)

As f increases and g decreases monotonically with H
we might expect that the realized exploitation (κ) has
an optimum on the home range axis. We can determine
this optimum by differentiating the foraging eqn 20 with
respect to the home range, and by setting the derivative
equal to zero. Let

f(X) = f(H1/d/T 2), (21)

then, we obtain

dκ/dH = (α/d)H(1−d)/dT−2f ′(X)g(I) (22)

+ [α(d− 1)/d]H−1/dTNE−1f(X)g′(I),

where f ′ and g′ are the derivatives of f and g with
respect to X and I. Setting dκ/dH = 0 we can reduce
eqn 22 and obtain

f(X)

f ′(X)
+
g(I)

g′(I)

1

d− 1

EH(2−d)/d

T 3N
= 0. (23)

In another unpublished study I have shown that I ∼ w0

when the body masses of the different species are in
evolutionary equilibria. The allometric scaling of the
fraction EH(2−d)/d/T 3N in eqn 23 will then remain
the same if it is multiplied by I = TH(d−1)/dN/E. For
T ∼ wt, H ∼ wh, N ∼ wn, and E ∼ we, the exponent
of this product (I · EH(2−d)/d/T 3N) is

t+ h(d− 1)/d+ n− e+ e (24)

+h(2− d)/d− 3t− n = h/d− 2t.

This exponent is equal to the exponent of X [eqn 21]
and, thus,

X ∼ EH(2−d)/d/T 3N. (25)
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Because I ∼ w0 it follows that g(I)/g′(I) is body mass
invariant and, thus, we can combine eqn 23 and eqn 25
in order to reduce eqn 23 to

f(X)

f ′(X)
− kX = 0, (26)

where k is a positive constant. Recall now that f is
a convex and monotonically increasing function of X.
Consequently, f/f ′ is monotonically increasing with X.
Then, at the most, eqn 26 can have two roots and, thus,
only one optimum with a limited home range. As in-
dividual selection will optimize the foraging efficiency
it will maintain the individuals at the home range op-
timum which implies that there is selection for a body
mass invariant X.

4 The body mass allometries

4.1 The allometric deduction

We have now enough information to deduce the allo-
metric exponents. From the body mass invariant level
of interference (I = TH(d−1)/dN/E ∼ w0) we have that

t+ h(d− 1)/d+ n− e = 0. (27)

From the body mass invariant level of self-inhibition
(X = H1/d/T 2 ∼ w0) we have that

h/d− 2t = 0. (28)

From eqn 11 we have that the resource density at the
equilibrium is E = Em − κN/γe. Then, as Em ∼ w0,
and γe ∼ w0 we have that E ∼ κN , from which it
follows that E/κN ∼ w0. if we into this equation insert
κ = αfg, with f ∼ w0, g ∼ w0, and α ∼ wa, we find
that

e− a− n = 0. (29)

Then, let I = 1/ZE with Z = 1/TH(d−1)/dN . We can
then insert E = Em − αfgN/γe into I−1 = EZ ∼ w0

and obtain EmZ − αfgNZ/γe ∼ w0, from which it
follows that Em ∼ αfgN/γe. If we insert Em ∼ w0,
γe ∼ w0, f ∼ w0, and g ∼ w0 into this equation we
obtain the scaling αN ∼ w0, from which it follows that

n = −1. (30)

Since the population is in equilibrium we have that
pTαfgE/w = 1 and, as p ∼ w0 [eqn 6] and f ∼ g ∼ w0

the scaling of this expression reduces to TαE/w ∼ w0.
Then, from TαE/w ∼ w0 we have

t+ a+ e = 1. (31)

Trait 1D 2D 3D dD

B −1/2 −1/4 −1/6 −1/2d

T 1/2 1/4 1/6 1/2d
N −1/2 −3/4 −5/6 (1 − 2d)/2d
H 1 1 1 1
U 0 0 0 0

BM 1/2 1/4 1/6 1/2d
S 1/2 1/4 1/6 1/2d

Rm 0 0 0 0
rm −1/2 −1/4 −1/6 −1/2d

Table 2: The exponents of the body mass allometries as
theoretically deduced for mobile organisms that forage in
one (1D), two (2D), three (3D), or d (dD) spatial dimen-
sions. B: metabolic rate per unit body mass. T : lifespan. N :

population density measured in d-dimensions (d ∈ [1, 2, 3, d]). H:

home range size measured in d-dimensions. U : population energy

use (U = NBw). BM : biomass (BM = Nw). S: Armitage’s so-

ciality index. Rm: maximal lifetime reproduction. rm: maximal

rate of population increase.

We then have five equations (27 to 31) from which we
can deduce the five unknown allometric exponents: e,
t, h, n and a.

To deduce the allometric exponents, from n = −a
[eqn 30] and e− a− n = 0 [eqn 29] we have

e = 0. (32)

From h/d− 2t = 0 [eqn 28] it follows that

h = 2td. (33)

When this h = 2td is inserted into eqn 27 together with
e = 0 [eqn 32] we get t+ 2t(d− 1) + n = 0 and, thus,

t = n/(1− 2d). (34)

Inserting this t = n/(1 − 2d), a = −n [eqn 30], and
e = 0 [eqn 32] into eqn 31 we have

n/(1− 2d)− n = 1, (35)

which can be solved for n

n =
1− 2d

2d
. (36)

Then, from eqns 30 and 36

a =
2d− 1

2d
. (37)

From eqns 34 and 36 we have

t = 1/2d. (38)
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From B ∼ wb, B ∼ 1/T , and eqn 38

b = −1/2d. (39)

From eqns 33 and 38

h = 1. (40)

4.2 Additional allometries

The results from eqns 32 and 36 to 40 provide us with
the basic allometric exponents from which we can ob-
tain the exponents of other body mass allometries. Be-
cause the population density scale as N ∼ w(1−2d)/2d

[eqn 36], and because the metabolic rate per unit body
mass scale as B ∼ w−1/2d [eqn 39], we have that the
energy that is metabolized per population (U) is body
mass invariant, i.e.

U = NBw ∼ w(1−2d)/2dw−1/2dw1 ∼ w0, (41)

and that the biomass (BM) of the consumer organism
will scale as

BM = Nw ∼ w(1−2d)/2dw1 ∼ w1/2d. (42)

Lifetime reproduction is maximal (i.e., R = Rm) at the
limit E → Em, f → 1, and g → 1. This implies that
Rm = TαEm/w and that it will scale as

Rm ∼ Tα/w ∼ w1/2d+(2d−1)/2d−1 ∼ w0. (43)

Then, the maximal rate of increase in the population
density will scale as

rm = ln(pRm)/T ∼ w−1/2d. (44)

Sociality has been defined as the “state of group forma-
tion when members of a population . . . have markedly
overlapping home ranges” (Armitage 1981). Hence, Ar-
mitage’s sociality index (S) is given by the home range
overlap

S ∼ HN ∼ w1w(1−2d)/2d ∼ w1/2d. (45)

In Table 2 the deduced exponents are summarized for
organisms that forage in 1, 2, 3 and d spatial dimen-
sions.

5 Empirical evidence

Empirically, it is the allometric relationship between
the metabolic rate and body mass that has been studied
in most detail. Table 3 lists the empirical exponents for

Group 2D 3D

Deduced 0.75 0.83

Mammals1 0.74 ± 0.01

Bats2 0.74
Birds3 0.74 ± 0.01
Reptiles4 0.76 ± 0.02
Snakes5 0.74 ± 0.04
Lizards6 0.82 ± 0.02
Turtles7 0.86 ± 0.03
Amphibians8 0.77
Frogs9 0.71
Salamanders10 0.82 ± 0.02
Freshwater fishes11 0.81 ± 0.01
Marine fishes11 0.79 ± 0.01
Lampreys8 0.81
Lancelets8 0.91

Table 3: The exponents for the allometric relation between
the metabolic rate and body mass as estimated for mobile
chordates by linear regression on double logarithm scale.
The estimated exponents are grouped according to whether
they resemble the exponent deduced for organisms that for-
age in two (2D) or three (3D) dimensions.1Stahl (1967).
2McNab (1969) and Konoplev et al. (1978). 3Calder (1974).
4Kayser & Heusner (1964), Bennett & Dawson (1976), and Zotin

& Konoplev (1978). 5Bennett & Dawson (1976). 6Bennett &

Dawson (1976) and Bartholomew & Tucker (1964). 7Bennett &

Dawson (1976) and Kayser & Heusner (1964). 8Zotin & Kono-

plev (1978). 9Hutchinson et al. (1968). 10Whitford & Hutchinson

(1967) and Feder (1976). 11Winberg (1960).

total metabolic rate (wB) for a variety of mobile chor-
dates, as estimated by linear regression in double loga-
rithmic scale. The estimated exponents are grouped ac-
cording to whether they resemble the exponent deduced
for organisms that forage in two or three dimensions.
The metabolic exponents for almost all terrestrial taxa
resemble the theoretic deduction for foraging in two di-
mensions. To the contrary, the metabolic exponents
for all pelagic taxa resemble the theoretic deduction
for foraging in three dimensions. This overall separa-
tion is likely to reflect the fact that for most terrestrial
vertebrates foraging and intra-population interference
are constrained to occur in the two horizontal dimen-
sions, while pelagic organisms have an extra vertical
dimension in which to forage and interact. This par-
titioning is present also between the terrestrial versus
pelagic mammals. Among 40 species of pelagic mam-
mals (taxa Cetacea, Pinnipidia, and Sirenia) the expo-
nent for maximal lifespan is 0.16± 0.02 while the same
exponent is 0.25± 0.04 among 195 species of terrestrial
mammals (data from Nowak 1991).

From Table 3 we notice that the metabolic exponents



8 Journal of Theoretical Biology 177 (1995) 129–137

for bats and birds, which move freely in the vertical di-
mension, resemble the theoretic deduction for foraging
in two dimensions. This resemblance is probably be-
cause of the fact that the foraging of most birds, and
probably also of most bats, occurs in a relatively thin
vertical layer where the movements in the two horizon-
tal dimensions is considerably larger than the move-
ments in the vertical dimension. Furthermore, intra-
population interference in form of territorial behavior
is predominately horizontal in birds. Thus, the true
dimensionality of these systems may be close to two,
although the organisms can move in three dimensions.

The metabolic exponent for frogs resembles the the-
oretical exponent for foraging in two dimensions, while
the metabolic exponent for salamanders resembles the
theoretical exponent for foraging in three dimensions.
This separation may arise because many salamanders
are more dependent upon ponds and lakes than are
many frogs. Likewise, many turtles are more depen-
dent upon ponds, lakes and rivers than are snakes. The
observed exponent for turtles resembles three dimen-
sions while the observed exponent for snakes resembles
two dimensions. At present it remains unclear why the
metabolic exponent of lizards apparently conforms to a
three dimensional system.

Most of the metabolic exponents that have been es-
timated for invertebrates lie between 0.71 and 0.85 (re-
viewed in Peters 1983) as expected for organisms that
forage in either two or three dimensions. Metabolic
exponents that resemble a two dimensional system
have been found for terrestrial taxa such as insects
(0.76 by Zotin and Konoplev 1978), moths (0.78 by
Bartholomew and Casey 1978) and spiders (0.71 by
Greenstone and Bennett 1980), while metabolic expo-
nents that resemble the three dimensional picture have
been found for pelagic taxa such as unicells (0.83±0.06
by Robinson et al. 1983) and unicellular algae (0.90 ±
0.06 by Banse 1976).

Of any group of organisms it is the terrestrial verte-
brates that have been subjected to the far most detailed
allometric studies. The estimated exponents from some
of these studies are listed in Table 4 together with the
deduced exponents for a two-dimensional system. From
this table it can be concluded that for all studied allo-
metric traits a reasonable resemblance exist between
the deduced and the observed allometric exponents.

The deduced exponents are based on the assump-
tion that interactions among the individuals of the in-
volved species are insignificant. This assumption is ex-
pected to be fulfilled for the empirical exponents in the
present study, because these exponents have been es-
timated at geographic scales above communities and

Trait 2D Mammals Reptiles Birds

B −0.25 −0.26 −0.24 −0.26
1349 4128 7130

T 0.25 0.25 - 0.18
2235 - 8242

N −0.75 −0.78 −0.7 −0.75
3467 511 9147

H 1 0.99 0.95 1.16
2125 629 1075

U 0 −0.08 - -
363 - -

S 0.25 0.22 - -
2210 - -

Rm 0 −0.03 - 0.00
296 - 8221

rm −0.25 −0.27 - −0.14
2174 - 8221

Table 4: The deduced (2D) and estimated exponents for
the body mass allometries for terrestrial vertebrates. B:

metabolic rate per unit body mass. T : lifespan. N : popula-

tion density. H: home range area. U : population energy use.

S: Armitage’s sociality index. Rm: maximal lifetime reproduc-

tion. rm: maximal rate of population increase. The empirical

exponents are estimated by linear regression on double logarith-

mic scale, and the numbers below the exponents are the number

species considered. 1Stahl (1967). 2Data from Nowak (1991).
3Damuth (1987). 4Kayser & Heusner (1964), Bennett & Dawson

(1976), and Zotin & Konoplev (1978). 5Peters (1983). 6Turner et

al. (1969). 7Zar (1969). 8Data from Cramp & Simmons (1977–

1983), Cramp (1985–1992), and Cramp & Perrins (1993). 9Nee

et al. (1991). 10Schoener (1968).

among species independently of competitive guilds. In
comparison, when the allometric exponents are empiri-
cally established at smaller scales, as within competitive
guilds, deviations have been found from the exponents
listed in the present study. For example, within the gen-
era and tribes of British birds Nee et al. (1991) found a
positive exponent for the population density allometry,
whereas the exponent decreased to the expected −3/4
when the same species were compared across larger tax-
onomic units.
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